
School of Computer Science

A New Look at the System,

Algorithm and Theory

Foundations of Distributed

Machine Learning

1Eric P. Xing and 2Qirong Ho

1Carnegie Mellon University

2Institute for Infocomm Research, A*STAR

KDD 15 © Eric Xing @ CMU, 2015

Acknowledgements:

Wei Dai, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Xun Zheng

Yaoliang Yu, James Cipar, Henggang Cui,

and, Phil Gibbons, Greg Ganger, Garth Gibson

1

Trees Falling in the Forest

●Nobody knows what’s in data unless it has been
processed and analyzed
●Need a scalable way to automatically search, digest, index,

and understand contents

Data ≠ Knowledge

"If a tree falls in a forest and no one is around to hear it, does it

make a sound?" --- George Berkeley

KDD 15 © Eric Xing @ CMU, 2015 2

Machine Learning

KDD 15 © Eric Xing @ CMU, 2015 3

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

Massive Data

KDD 15 © Eric Xing @ CMU, 2015 4

The Scalability Challenge

Pathetic

Good!

P
ro

c
e

s
s
in

g

p
o

w
e

r/
s

p
e

e
d

Number of “machines”

KDD 15 © Eric Xing @ CMU, 2015 5

for (t = 1 to T) {
 doThings()

 doOtherThings()
}

An ML Program

Model Parameter Data

This computation needs to be scaled up !

Solved by an iterative convergent algorithm

KDD 15 © Eric Xing @ CMU, 2015 6

Challenge 1 –

Massive Data Scale

Familiar problem: data from 50B devices, data

centers won’t fit into memory of single machine

Source: Cisco Global Cloud

Index

Source: The Connectivist

D q(D)

KDD 15 © Eric Xing @ CMU, 2015 7

Challenge 2 –

Gigantic Model Size

Maybe Big Data needs Big Models to extract understanding?

But models with >1 trillion params also won’t fit!

Source: University of

Bonn

D q(D)

KDD 15 © Eric Xing @ CMU, 2015 8

Classic algorithms used for decades

K-

means

Logistic

regression

Decision

trees

Naive Bayes

Challenge 3 – Inadequate support

for newer methods

KDD 15 © Eric Xing @ CMU, 2015 9

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

 Collaborative filtering
for Video recommendation:

1~10 Billion
 model

parameters

Multi-task Regression
 for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Need for Big and

Contemporary ML Programs

KDD 15 © Eric Xing @ CMU, 2015 10

The Need for Distributed ML

 We had developed

 a highly cost-effective model (MMTM [Ho et al., 2012]),

 two generations of highly efficient algorithms

 (δ-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013])

 and highly specialized implementations

 State-of-the-art results: 1M node networks with 100 roles in a few hours, on
just one machine, 2-3 order’s of magnitudes speed-up

 But when we tried to do 10K roles in a 100M-node network:

 Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM

 Computation: 10K+ hrs on one machine, i.e. yrs!

 Attempt with Hadoop failed while in FB (see later) !!!

Say we want to analyze 10K

roles in a 100M-node network,

using a mixed membership

model?

KDD 15 © Eric Xing @ CMU, 2015 11

Many Open Questions:

 When is Big Data useful?

 Are Big Models useful?

-- Both positive and negative answers exist …

 Inference algorithms, or inference systems?

 Theoretical guarantees, or empirical performance?

KDD 15 © Eric Xing @ CMU, 2015 12

Current Solutions to Scalable ML

 Implementations of specific ML algorithms

 YahooLDA, Vowpal Wabbit, Caffe, Torch, …

 Provide a finely-tuned implementation of one (or a few) ML algorithms

 Platforms for general-purpose ML

 Hadoop, Spark, GraphLab, Petuum, …

 Allow others to write new ML programs

 Why this tutorial?

 At first glance, ML problems seem radically different

 We introduce a formal picture of ML to “bring order to the zoo”

 We expose ML mathematical properties to be explored and later exploited

 We note that many ML problems can be solved by a few “workhorse” algorithms

 We explain how to design systems around these insights – thus achieving

scalability, with both speed and solution quality guarantees

 We provide theoretical guarantees for the system designs, and lay out roadmap

for further analysis

KDD 15 © Eric Xing @ CMU, 2015 13

School of Computer Science

Overview of Modern ML

KDD 15 © Eric Xing @ CMU, 2015 14

A “Classification” of ML Models

and Tools

 An ML program consists of:

 A mathematical “ML model” (from one of many families)…

 … which is solved by an “ML algorithm” (from one of a few types)

KDD 15 © Eric Xing @ CMU, 2015

• Stochastic Versions of the above Algorithms

• MC and MCMC • Optimization
• Matrix and

Spectral

Algorithms

• Nonparametric

Bayesian Models

• Graphical Models

• Sparse Structured

Input/Output

Regression
• Sparse Coding

• Spectral/Matrix

Methods

• Regularized

Bayesian Methods

• Deep Learning • Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

15

A “Classification” of ML Models

and Tools

 We can view ML programs as either

 Probabilistic programs

 Optimization programs

KDD 15 © Eric Xing @ CMU, 2015

Probabilistic Programs Optimization Programs

16

Key building blocks

of an ML program

 ML program: f(θ,D) = L(θ,D) + r(θ)

 Objective or Loss function: L(θ,D)

 θ = model, D = data

 Common examples:

 Least squares difference between predicted value and data

 Log-likelihood of data

 Regularization / Prior / Structural Knowledge: r(θ)

 Common examples:

 L2 regularization on θ to prevent overfitting

 L1 regularization on θ to obtain sparse solution

 (log of) Gaussian or Laplace priors over θ

 (log of) Dirichlet prior over θ for smoothing

 Algorithm to solve for model given the data (cont’ next slide)

KDD 15 © Eric Xing @ CMU, 2015 17

Iterative-convergent view of ML

 ML models solved via iterative-convergent ML algorithms
 Iterative-convergent algorithms repeat until θ is stationary. Examples:

 Probabilistic programs: MC, MCMC, Variational Inference

 Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

KDD 15 © Eric Xing @ CMU, 2015

New Model = Old Model +

Update(Data)

D q(D) D q(D)

18

Optimization Example:

Lasso Regression

 Data, Model

 D = {feature matrix X, response vector y}

 θ = {parameter vector β)

 Objective L(θ,D)

 Least-squares difference between y and Xβ:

 Regularization r(θ)

 L1 penalty on β to encourage sparsity:

 λ is a tuning parameter

 Algorithms

 Coordinate Descent

 Stochastic Proximal Gradient Descent

KDD 15 © Eric Xing @ CMU, 2015 19

Optimization Example:

Lasso Regression

KDD 15 © Eric Xing @ CMU, 2015

Model (Parameter Vector)

Data (Feature + Response Matrices)

Update (CD algo)

20

Applications:

Genetic Assays, Online Advertising

Probabilistic Example:

Topic Models

 Objective L(θ,D)

 Log-likelihood of D = {document words xij} given unknown θ = {document word

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

 Prior r(θ)

 Dirichlet prior on θ = {doc-topic, word-topic distributions}

 α, β are “hyperparameters” that control the Dirichet prior’s strength

 Algorithm

 Collapsed Gibbs Sampling

KDD 15 © Eric Xing @ CMU, 2015 21

Probabilistic Example:

Topic Models

KDD 15 © Eric Xing @ CMU, 2015

Model (Topics) = Bk Data (Docs) = xij

Applications: Natural Language Processing, Information Retrieval

Update (Collapsed Gibbs sampling)

22

 ML Computation vs. Classical

Computing Programs

ML Program:

optimization-centric and

iterative convergent

Traditional Program:

operation-centric and

deterministic
KDD 15 © Eric Xing @ CMU, 2015 23

 Traditional Data Processing

needs operational correctness …

Example: Merge sort

Sorting

error: 2

after 5

Error persists and is

not corrected
KDD 15 © Eric Xing @ CMU, 2015 24

… but ML Algorithms

can Self-heal

KDD 15 © Eric Xing @ CMU, 2015 25

 ML is optimization-centric, and admits an iterative convergent

algorithmic solution rather than a one-step closed form solution

 Error tolerance: often robust against limited

 errors in intermediate calculations

 Dynamic structural dependency:

 changing correlations between model parameters

 critical to efficient parallelization

 Non-uniform convergence: parameters

 can converge in very different number of steps

 Whereas traditional programs are transaction-centric, thus only

guaranteed by atomic correctness at every step

More Intrinsic Properties of ML

Programs

KDD 15 © Eric Xing @ CMU, 2015 26

Why come up with

an ML classification?

 An ML classification helps to solve ML algorithm challenges

systematically

 No need to invent new algorithms for each new ML model or variant

 Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve

entire classes of models

 For each new ML model, determine which ML class it falls under

 Then apply the most appropriate workhorse algorithm for that class

 Next tutorial section: Distributed ML Algorithms

 We present a number of “workhorse” algorithms:

 Basic form

 Which units can be parallelized

 What risks are incurred by parallelization (e.g. error or non-convergence)

 Examples of scalable realizations (software)

KDD 15 © Eric Xing @ CMU, 2015 27

School of Computer Science

Distributed ML Algorithms

KDD 15 © Eric Xing @ CMU, 2015 28

for (t = 1 to T) {
 doThings()

 doOtherThings()
}

An ML Program

Model Parameter Data

This computation needs to be parallelized!

Solved by an iterative convergent algorithm

KDD 15 © Eric Xing @ CMU, 2015 29

Challenge

 Optimization programs:

A huge number of parameters

(e.g.) J = 1B

N

M

M =

A huge volume of data

(e.g.) N = 1B
KDD 15 © Eric Xing @ CMU, 2015 30

Challenge

 Probabilistic programs

topic doc

(~ 1B)

topic

word (~ 1M)

topic

(~ 1M)

KDD 15 © Eric Xing @ CMU, 2015 31

Parallelization Strategies

KDD 15 © Eric Xing @ CMU, 2015

Data Parallel

New Model = Old Model +

Update(Data)

D q(D)

32

Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model +

Update(Data)

D q(D) D q(D)

KDD 15 © Eric Xing @ CMU, 2015 33

Outline:

Optimization & MCMC Algorithms

 Optimization Algorithms

 Stochastic gradient descent

 Coordinate descent

 Proximal gradient methods

 ISTA, FASTA, Smoothing proximal gradient

 ADMM

 Markov Chain Monte Carlo Algorithms

 Auxiliary Variable methods

 Embarrassingly Parallel MCMC

 Parallel Gibbs Sampling

 Data parallel

 Model parallel

 KDD 15 © Eric Xing @ CMU, 2015 34

Example Optimization Program:

Sparse Linear Regression

)(
2

1
min

2

2
βXβy

β

Data fitting Regularization

Data fitting part:

 - find β that fits into the data

 - Squared loss, logistic loss, hinge loss, etc

Regularization part:

 - induces sparsity in β.

 - incorporates structured information into the model
© Eric Xing @ CMU, 2015 KDD 15 35

Example Optimization Program:

Sparse Linear Regression

)(
2

1
min

2

2
βXβy

β

Examples of regularization :)(β

J

j

jlasso

1

)(β

G

group

g

gββ
2

)(

)(βtree

)(βoverlap

g

gβ
j

j

2

2
)(where

Sparsity

Structured sparsity

(sparsity + structured information)

© Eric Xing @ CMU, 2015 KDD 15 36

Algorithm I:

Stochastic Gradient Descent

 Consider an optimization problem:

 Classical gradient descent:

 Stochastic gradient descent:

 Pick a random sample di

 Update parameters based on noisy approximation of the true gradient

 KDD 15 © Eric Xing @ CMU, 2015 37

 SGD converges almost surely to

a global optimal for convex problems

 Traditional SGD compute gradients based on a single

sample

 Mini-batch version computes gradients based on multiple

samples

 Reduce variance in gradients due to multiple samples

 Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

Stochastic Gradient Descent

KDD 15 © Eric Xing @ CMU, 2015 38

Parallel Stochastic Gradient

Descent

 Parallel SGD: Partition data to different workers; all workers

update full parameter vector

 Parallel SGD [Zinkevich et al., 2010]

 PSGD runs SGD on local copy of params in each machine

Input

Data

Input

Data

Input

Data
split Update local copy

of ALL params

Update local copy

of ALL params

aggregate

Update ALL

params

Input

Data

Input

Data

Input

Data

KDD 15 © Eric Xing @ CMU, 2015 39

Hogwild!: Lock-free approach to

PSGD [Recht et al., 2011]

 Goal is to minimize a function in the form of

 e denotes a small subset of parameter indices

 xe denotes parameter values indexed by xe

 Key observation:

 Cost functions of many ML problems can be represented by f(x)

 In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is

applied only a small number of parameters in x

 © Eric Xing @ CMU, 2015 KDD 15 40

Hogwild!: Lock-free approach to

PSGD [Recht et al., 2011]

 Example:

 Sparse SVM

 z is input vector, and y is a label; (z,y) is an elements of E

 Assume that zα are sparse

 Matrix Completion

 Input A matrix is sparse

 Graph cuts

 W is a sparse similarity matrix, encoding a graph

 KDD 15 © Eric Xing @ CMU, 2015 41

Hogwild! Algorithm [Recht et al., 2011]

 Hogwild! algorithm: iterate in parallel for each core

 Sample e uniformly at random from E

 Read current parameter xe; evaluate gradient of function fe

 Sample uniformly at random a coordinate v from subset e

 Perform SGD on coordinate v with small constant step size

 Advantages

 Atomically update single coordinate, no mem-locking

 Takes advantage of sparsity in ML problems

 Near-linear speedup on various ML problems, on single machine

 Excellent on single machine, less ideal for distributed

 Atomic update on multi-machine challenging to implement; inefficient and slow

 Delay among machines requires explicit control… why? (see next slide)

KDD 15 © Eric Xing @ CMU, 2015 42

The cost of uncontrolled delay –

slower convergence [Dai et al. 2015]

 Theorem: Given lipschitz objective ft and step size ηt,

 where

 Where L is a lipschitz constant, and εm and εv are the mean and variance of the

delay

 Intuition: distance between current estimate and optimal value

decreases exponentially with more iterations

 But high variance in the delay εv incurs exponential penalty!

 Distributed systems exhibit much higher delay variance,

compared to single machine

 KDD 15 © Eric Xing @ CMU, 2015 43

The cost of uncontrolled delay –

unstable convergence [Dai et al. 2015]

 Theorem: the variance in the parameter estimate is

 Where

 and represents 5th order or higher terms, as a function of the delay εt

 Intuition: variance of the parameter estimate decreases near

the optimum

 But delay εt increases parameter variance => instability during convergence

 Distributed systems have much higher average delay,

compared to single machine

KDD 15 © Eric Xing @ CMU, 2015 44

Parallel SGD with

Key-Value Stores

 We can parallelize SGD via

 Distributed key-value store to share parameters

 Synchronization scheme to synchronize parameters

 Shared key-value store provides easy interface to read/write

shared parameters

 Synchronization scheme determines how parameters are

shared among multiple workers

 Bulk synchronous parallel (e.g., Hadoop)

 Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

 Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]

KDD 15 © Eric Xing @ CMU, 2015 45

Parallel SGD with

Bounded Async KV-store

 Stale synchronous parallel (SSP) is a synchronization model

with bounded staleness – “bounded async”

 Fastest and the slowest workers are ≤s clocks apart

KDD 15 © Eric Xing @ CMU, 2015 46

Example KV-Store Program:

Lasso

 Lasso example: want to optimize

 Put β in KV-store to share among all workers

 Step 1: SGD: each worker draws subset of samples Xi

 Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient

 Step 2: Proximal operator: perform soft thresholding on β

 Can be done at workers, or at the key-value store itself

 Bounded Asynchronous synchronization allows fast read/write

to β, even over slow or unreliable networks
© Eric Xing @ CMU, 2015 KDD 15 47

Bounded Async KV-store:

Faster and better convergence

KDD 15 © Eric Xing @ CMU, 2015 48

Algorithm II:

Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

1 2 3 J
2st iteration

1 2 3 J

 Pros and cons

 Unlike SGD, CD does not involve learning rate

 If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)

 However, as sample size increases, time for each iteration also increases

KDD 15 © Eric Xing @ CMU, 2015 49

Example: Coordinate Descent for

Lasso

 Set a subgradient to zero:

 Assuming that , we can derive update rule:

j

j
2

22

1
minˆ Xβyβ
β

0)(j

T

j tXβyx

1j

T

j
xx

),(
jl

ll

T

jj xS yx
Soft thresholding

))((),(xxsignxS

Standardization

KDD 15 © Eric Xing @ CMU, 2015 50

Example: Block Coordinate

Descent for Group Lasso

 Set it to zero:

 In a similar fashion, we can derive update rule for group g

j

j
2

22

1
minˆ Xβyβ
β

gXβyx ju j

T

j ,0)(

Iterate over each

group of coefficients
© Eric Xing @ CMU, 2015 KDD 15 51

Parallel Coordinate Descent
[Bradley et al. 2011]

 Shotgun, a parallel coordinate descent algorithm

 Choose parameters to update at random

 Update the selected parameters in parallel

 Iterate until convergence

 When features are nearly independent, Shotgun scales

almost linearly

 Shotgun scales linearly up to workers, where ρ is spectral radius of ATA

 For uncorrelated features, ρ=1; for exactly correlated features ρ=d

 No parallelism if features are exactly correlated!

KDD 15 © Eric Xing @ CMU, 2015 52

Intuitions for Parallel Coordinate

Descent

 Concurrent updates of parameters are useful when features

are uncorrelated

 Updating parameters for correlated features may slow down

convergence, or diverge parallel CD in the worst case

 To avoid updates of parameters for correlated features, block-greedy CD has

been proposed

KDD 15 © Eric Xing @ CMU, 2015 53

Uncorrelated features Correlated features

Source:

[Bradley et al., 2011]

Block-greedy Coordinate Descent
[Scherrer et al., 2012]

 Block-greedy coordinate descent generalizes various parallel

CD strategies

 e.g. Greedy-CD, Shotgun, Randomized-CD

 Alg: partition p params into B blocks; iterate:

 Randomly select P blocks

 Greedily select one coordinate per P blocks

 Update each selected coordinate

 Sublinear convergence O(1/k) for separable regularizer r :

 Big-O constant depends on the maximal correlation among the B blocks

 Hence greedily cluster features (blocks) to reduce correlation

KDD 15 © Eric Xing @ CMU, 2015 54

Parallel Coordinate Descent with

Dynamic Scheduler
[Lee et al., 2014]

 STRADS (STRucture-Aware Dynamic Scheduler) allows

scheduling of concurrent CD updates

 STRADS is a general scheduler for ML problems

 Applicable to CD, and other ML algorithms such as Gibbs sampling

 STRADS improves CD performance via

 Dependency checking

 Update parameters which are nearly independent => small parallelization error

 Priority-based updates

 More frequently update those parameters which decrease objective function faster

KDD 15 © Eric Xing @ CMU, 2015 55

Example Scheduler Program:

Lasso

 Schedule step:

 Prioritization: choose next variables βj to update, with probability proportional to

their historical rate of change

 Dependency checking: do not update βj, βk in parallel if feature dimensions j

and k are correlated

 Update step:

 For all βj chosen in Schedule step, in parallel, perform coordinate descent update

 Repeat from Schedule step

 KDD 15 © Eric Xing @ CMU, 2015 56

 Priority-based scheduling converges faster than Shotgun

(random) scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
b

je
c
ti
v
e

STRADS

Lasso−RR

Comparison:

priority vs. random-scheduling

KDD 15 © Eric Xing @ CMU, 2015 57

Priority-based scheduling +

dep. checker

b
e
tt

e
r Shotgun scheduling [Bradley et al. 2011]

Advanced

Optimization Techniques

 What if simple methods like SPG, CD are not adequate?

 Advanced techniques at hand

 Complex regularizer: PG

 Complex loss: SPG

 Overlapping loss/regularizer: ADMM

 How to parallelize them? Must understand math behind

algorithms

 Which terms should be computed at server

 Which terms can be distributed to clients

 …

KDD 15 © Eric Xing @ CMU, 2015 58

When Constraints Are Complex:

 -- Algorithm III: Proximal Gradient (a.k.a. ISTA)

 f: loss term, smooth (continuously differentiable)

 g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient

• g represents some simple function

• e.g., 1-norm, constraint C, etc.

Projected gradient

• g represents some constraint

KDD 15 © Eric Xing @ CMU, 2015 59

Algorithm III:

Proximal Gradient (a.k.a. ISTA)

 PG hinges on the proximal map [Moreau, 1965]:

 Treated as black-box in PG

 Need proximal map efficiently computable, better closed-form

 True when g is separable and “simple”, e.g. 1-norm (separable in each

coordinate), non-overlapping group norm, etc.

 Can be demanding if g = g1+g2, but vars in g1, g2 overlap

 [Yu, 2013] gave sufficient conditions for when g = g1+g2 can

be easily handled:

 Useful when and available in closed-forms

 E.g. fused lasso (Friedman et al.'07):

© Eric Xing @ CMU, 2015 KDD 15 60

Accelerated PG (a.k.a. FISTA)
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

 PG convergence rate

 Can be boosted to

 Same Lipschitz gradient assumption on f; similar per-step complexity!

 Lots of follow-up work to the papers cited above

Proximal Gradient Accelerated Proximal Gradient

© Eric Xing @ CMU, 2015 KDD 15 61

Parallel (Accelerated) PG

 Bulk Synchronous Parallel Accelerated PG (exact)

 [Chen and Ozdaglar, 2012]

 Asynchronous Parallel (non-accelerated) PG (inexact)

 [Li et al., 2014] Parameter Server

 General strategy:

1. Compute gradients on workers

2. Aggregate gradients on servers

3. Compute proximal operator on servers

4. Compute momentum on servers

5. Send result wt+1 to workers and repeat

 Can apply Hogwild-style asynchronous updates to non-

accelerated PG, for empirical speedup

 Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?

KDD 15 © Eric Xing @ CMU, 2015 62

When Objective Is Not Smooth:

 -- Moreau Envelope Smoothing

 So far need f to have Lipschitz cont grad, obtained O(1/t2)

 What if not ?

 Can use subgradient, with diminishing step size O(1/sqrt(t))

 Huge gap !!

 Smoothing comes into rescue, if f itself is H-Lipschitz cont

 Approx f with something nicer, like Taylor expansion in calculus 101

 Replace f with its Moreau envelope function

 f(w) = |w|, envelope is Huber’s func (blue curve)

 Minimizer gives the proximal map (red curve)

Prop.

© Eric Xing @ CMU, 2015 KDD 15 63

Smoothing Proximal Gradient
[Chen et al., 2012]

 Use Moreau envelope as smooth approximation

 Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

 Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]

 Proximal point alg = PG, when

 Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

 With , SPG converges at

 Improves subgradient

 Requires both efficient and

Smoothing Proximal Gradient
original

approx.

KDD 15 © Eric Xing @ CMU, 2015 64

Parallel SPG?

 No known work yet

 Possible strategy:

1. Compute smoothed gradients on workers

2. Aggregate smoothed gradients on servers

3. Compute proximal operator on servers

4. Compute momentum on servers

5. Send result wt+1 to workers and repeat

 The above strategy is exact under Bulk Synchronous Parallel

(just like accelerated PG).

 Not clear how asynchronous updates impact smoothing+momentum

 Open research topic

KDD 15 © Eric Xing @ CMU, 2015 65

When Variables Are Coupled:

 -- Algorithm IV: ADMM

 Numerically challenging because

 Function f or g nonsmooth or constrained (i.e., can take value)

 Linear constraint couples the variables w and z

 Large scale, interior point methods NA

 Naively alternating x and z does not work

 Min w2 s.t. w + z = 1; optimum clearly is w = 0

 Start with say w = 1 z = 0 w = 1 z = 0 …

 However, without coupling, can solve separately w and z

 Idea: try to decouple vars in the constraint!

 uncoupled coupled

where

Canonical form:

© Eric Xing @ CMU, 2015 KDD 15 66

Example: Empirical Risk

Minimization (ERM)

 Each i corresponds to a training point (xi, yi)

 Loss fi measures the fitness of the model parameter w

 least squares:

 support vector machines:

 boosting:

 logistic regression:

 g is the regularization function, e.g. or

 Vars coupled in obj, but not in constraint (none)

 Reformulate: transfer coupling from obj to constraint

 Arrive at canonical form, allow unified treatment later

 coupled

© Eric Xing @ CMU, 2015 KDD 15 67

How to: variable duplication

 Duplicate variables to achieve canonical form

 Global consensus constraint:

 All wi must (eventually) agree

 Downside: many extra variables, increase problem size

 Implicitly maintain duplicated variables

© Eric Xing @ CMU, 2015 KDD 15 68

Augmented Lagrangian

 Intro Lagrangian multiplier to decouple variables

 : augmented Lagrangian

 More complicated min-max problem, but no coupling constraints

where

Canonical form:

© Eric Xing @ CMU, 2015 KDD 15 69

Algorithm IV:

ADMM

 Fix dual , block coordinate descent on primal w, z

 Fix primal w, z, gradient ascent on dual

 Step size can be large, e.g.

 Usually rescale to remove

KDD 15 © Eric Xing @ CMU, 2015 70

Row partition (data parallel)

 each i corresponds to a (block of) training data Ai

 all summands fi share the same global variable z

 all ERM in this form: SVM, lasso, logistic regression, etc.

 parallellize by duplicating z into w1, … wn

 Exact Synchronization (bulk sync parallel) needed

worker machine i server

KDD 15 © Eric Xing @ CMU, 2015 71

Column partition (model parallel)

 in columns data , variables

 Each function gj have its own variable wj

 All variables wj coupled in f

 parallelize by adding auxiliary variable

 Exact Synchronization (bulk sync parallel) needed

worker machine j server

KDD 15 © Eric Xing @ CMU, 2015 72

Asynchronous Parallel ADMM
[Zhang & Kwok, 2014]

 Only simplified consensus problem being studied:

 Can distribute the primal updates for each wi

 But dual update can happen only after all

primal updates – barrier bottleneck

 How to alleviate the barrier bottleneck?

 Asynchronously execute dual update after seeing s out of n primal updates

 Condition: no machine is too far behind

 Can be achieved with bounded staleness [Ho et al., 2013]

 Asynchronous convergence proved in [Zhang & Kwok, 2014]

© Eric Xing @ CMU, 2015 KDD 15 73

Outline:

Optimization & MCMC Algorithms

 Optimization Algorithms

 Stochastic gradient descent

 Coordinate descent

 Proximal gradient methods

 ISTA, FASTA, Smoothing proximal gradient

 ADMM

 Markov Chain Monte Carlo Algorithms

 Auxiliary Variable methods

 Embarrassingly Parallel MCMC

 Parallel Gibbs Sampling

 Data parallel

 Model parallel

 KDD 15 © Eric Xing @ CMU, 2015 74

Example Probabilistic Program:

Topic Models

 Generative model

 Fit topics to each word xij in each doc i

 Uses categorical distributions with parameters δ and B

 Parameter priors

 Induce sparsity in δ and B

 Can also incorporate structure

 E.g. asymmetric prior

KDD 15 © Eric Xing @ CMU, 2015

doc

(~ 1B)

topic

δi
topic

word (~ 1M)

Bk

Generative

model of data

Priors on

parameters

75

Inference for Probabilistic

Programs: MCMC and SVI

δi

zij

 xij B

Ni

N

 K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Next set of slides on this

Variational Inference:
Gradient ascent on variables

Can be treated as an optimization problem

δi

zij

xij B

Ni

N

 K

KDD 15 © Eric Xing @ CMU, 2015 76

Preliminaries:

Speeding up sequential MCMC

 Technique 1: Alias tables

 Sample from categorical distribution in amortized O(1)

 “Throw darts at a dartboard”

 Ex: probability distribution [0.5, 0.25, 0.25]

 => alias table {1, 1, 2, 3} => draw from table uniformly at random

 Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]

 Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k)

 Propose z1 from Pevidence(k)

 Accept/Reject z1

 Propose z2 from Pprior(k)

 Accept/Reject z2 … repeat

 Pprior(k), Pevi(k) cheap to compute with alias table

 Other speedup techniques

 Stochastic Gradient MCMC

 Stochastic Variational Inference

KDD 15 © Eric Xing @ CMU, 2015 77

Pevidence(z = k) Pprior(z = k)

Parallel and Distributed MCMC:

Classic methods

 Classic parallel MCMC solution 1

 Take multiple chains in parallel, take average/consensus between chains.

 But what if each chain is very slow to converge?

 Need full dataset on each process – no data parallelism!

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

KDD 15 © Eric Xing @ CMU, 2015 78

Parallel and Distributed MCMC:

Classic methods

 Classic parallel MCMC solution 2

 Sequential Importance Sampling

 Rewrite distribution over n variables as telescoping product over proposals q():

 SIS algorithm:

● Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

● Parallel compute unnorm. wgts.

● Compute normalized weights wi
n by normalizing ri

n

 Drawback: variance of SIS samples increases exponentially with n

 Need resampling + take many chains to control variance

 Let us look at newer solutions to parallel MCMC…

KDD 15 © Eric Xing @ CMU, 2015

where

79

Solution I: Induced Independence

via Auxiliary Variables [Dubey et al. 2013, 2014]

 Auxiliary Variable Inference: reformulate model as P

independent models

 Example below: Dirichlet Process for mixture models

 Also applies to Hierarchical Dirichlet Process for topic models

 AV model (left) equivalent to standard DP model (right)

KDD 15 © Eric Xing @ CMU, 2015 80

Solution I: Induced Independence

via Auxiliary Variables [Dubey et al., 2013, 2014]

● Why does it work? A mixture over Dirichlet processes is

equivalent to a Dirichlet processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over

Processor DPs 1...P

KDD 15 © Eric Xing @ CMU, 2015 81

Solution I: Induced Independence

via Auxiliary Variables [Dubey et al., 2013, 2014]

 Parallel inference algorithm:

 Initialization: assign data randomly across P Dirichlet Processes; assign each

Dirichlet Process to one worker p=1..P

 Repeat until convergence:

 Each worker performs Gibbs sampling on local data within its DP

 Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

 For each cluster c, propose a new DP q=1..P

 Compute proposal probability of c moving to p

 Acceptance ratio depends on cluster size

 Can be done asynchronously in parallel without affecting

performance

KDD 15 © Eric Xing @ CMU, 2015 82

Solution II: Embarrassingly Parallel

(but correct) MCMC [Neiswanger et al., 2014]

 High-level idea:

 Run MCMC in parallel on data subsets; no communication between machines.

 Combine samples from machines to construct full posterior distribution samples.

 Objective: recover full posterior distribution

 Definitions:

 Partition data into M subsets

 Define m-th machine’s “subposterior” to be

 Subposterior: “The posterior given a subset of the observations with an underweighted

prior”.

KDD 15 © Eric Xing @ CMU, 2015 83

Embarassingly Parallel MCMC

 Algorithm

1. For m=1…M independently in parallel, draw samples from each subposterior

2. Estimate subposterior density product (and thus the

full posterior) by “combining subposterior samples”

 “Combine subposterior samples” via nonparametric estimation

1. Given T samples from each subposterior :

 Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2. Combine subposterior KDEs:

 where

KDD 15 © Eric Xing @ CMU, 2015 84

Embarassingly Parallel MCMC

 Simulations:

 More subposteriors = tighter estimates

 EPMCMC recovers correct parameter

 Naïve subposterior averaging does not!

KDD 15 © Eric Xing @ CMU, 2015 85

Solution III:

Parallel Gibbs Sampling

 Many MCMC algorithms

 Sequential Monte Carlo [Canini et al., 2009]

 Hybrid VB-Gibbs [Mimno et al., 2012]

 Langevin Monte Carlo [Patterson et al., 2013]

 …

 Common choice in tech/internet industry:

 Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]

 e.g. topic model Collapsed Gibbs sampler:

KDD 15 © Eric Xing @ CMU, 2015 86

Properties of

Collapsed Gibbs Sampling (CGS)

 Simple equation: easy for system engineers to scale up

 Good theoretical properties

 Rao-Blackwell theorem guarantees CGS sampler has lower variance (better

stability) than naïve Gibbs sampling

 Empirically robust

 Errors in δ, B do not affect final stationary distribution by much

 Updates are sparse: fewer parameters to send over network

 Model parameters δ, B are sparse: less memory used

 If it were dense, even 1M word * 10K topic ≈ 40GB already!

KDD 15 © Eric Xing @ CMU, 2015 87

CGS Example:

Topic Model sampler

docs i

(~ 1B)

topics k words v (~ 1M)

KDD 15 © Eric Xing @ CMU, 2015 88

“Word-topic

summary table”

B

δ

topics k topics k

Data Parallelization for

CGS Topic Model Sampler

doc

partition

words v (~ 1M)

doc

partition

doc

partition

model

replica

model

replica

model

replica

KDD 15 © Eric Xing @ CMU, 2015 89

δ1

δ2

δ3

B

B

B

topics k

Data-Parallel Strategy:

Approx. Distributed LDA
[Newman et al., 2009]

 Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015 90

Data-Parallel Strategy:

Approx. Distributed LDA
[Newman et al., 2009]

 Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015 91

Data-Parallel Strategy:

Approx. Distributed LDA
[Newman et al., 2009]

 Step 2: Perform Gibbs sampling in parallel

KDD 15 © Eric Xing @ CMU, 2015 92

Data-Parallel Strategy:

Approx. Distributed LDA
[Newman et al., 2009]

 Step 3: commit changes back to the central model

KDD 15 © Eric Xing @ CMU, 2015 93

Data-Parallel Strategy:

Approx. Distributed LDA
[Newman et al., 2009]

 Approximate

 Convergence not guaranteed – Markov Chain ergodicity broken

 Results generally “good enough” for industrial use

 Bulk synchronous parallel

 CPU cycles are wasted while synchronizing the model

 Asynchronous and bounded-asynchronous extensions possible [Smola et al.,

2010; Ahmed et al., 2012, Dai et al., 2015]

 How to overlap communication and computation for better

efficiency?

KDD 15 © Eric Xing @ CMU, 2015 94

Error in data-parallel LDA

 Consider the CGS equation:

 Data-parallelism incurs error in B (the pink box) and the

summation term (the gray box)

 Both quantities are duplicated onto workers; their values become stale as

sampling proceeds

 True even for bulk synchronous parallel execution!

 Asynchrony helps somewhat

 Communicate very frequently to reduce staleness

 Is there a better solution?

KDD 15 © Eric Xing @ CMU, 2015 95

Model-Parallel Strategy 1:

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

 Think graphically: token = edge

docs
words

KDD 15 © Eric Xing @ CMU, 2015 96

Column

= topic k

Row =

topic k

Column

= topic k

Word-topic

summary table

Model-Parallel Strategy 1:

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

 Model-parallel via graph structure

doc word

KDD 15 © Eric Xing @ CMU, 2015 97

Worker 1

Worker 2

Word-topic

summary table

(copy on worker 1)

Word-topic

summary table

(copy on worker 2)

Model-Parallel Strategy 1:

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

 Asynchronous communication

 Overlaps computation and communication – iterations are faster

 Model-parallelism means each machine only stores a subset

of statistics

 Less memory usage if implemented well

 Drawback: need to convert problem into a graph

 Vertex-cut duplicates lots of vertices, canceling out savings

 Are there other ways to partition the problem?

KDD 15 © Eric Xing @ CMU, 2015 98

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 Topic model matrix structure:

 Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc

(~ 1B)

topic word (~ 1M)

topic

KDD 15 © Eric Xing @ CMU, 2015 99

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 Non-overlapping partition of the word count matrix

 Fix data at machines, send model to machines as needed

KDD 15 © Eric Xing @ CMU, 2015 100

Source: [Gemulla et al., 2011]

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 During preprocessing: determine set of words used in each

data block

 Begin training: load each data block from disk

KDD 15 © Eric Xing @ CMU, 2015

disk

sequential

read

101

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 Pull the set of words from Key-Value store

KDD 15 © Eric Xing @ CMU, 2015

disk

=

sequential

read

102

Local copy of word-

topic summary table

Key-value store

Local model copy

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 Sample, write result to disk, send changes back to KV-store

KDD 15 © Eric Xing @ CMU, 2015

disk

sequential

read

sequential write

=

103

Local copy of word-

topic summary table

Key-value store

Model-Parallel Strategy 2:

LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

 Model-parallel advantage: disjoint words/docs on each

machine

 Gibbs sampling almost equivalent to sequential case

 More accurate than data-parallel LDA

 Fast, asynchronous execution possible

 Compared to GraphLab LDA:

 Simple partitioning strategy – less system overheads, easier to implement

 Need to be careful about load imbalance (some docs will touch a particular word

more times than others)

 Solution: pre-group documents by word frequency

KDD 15 © Eric Xing @ CMU, 2015 104

Error in model-parallel LDA

 Recall the CGS equation:

 Model-parallelism only has error in summation term (gray box)

 Summation term is very large for Big Data (billions of docs) => error negligible

 Compared to data-parallelism: error due to B (pink box) eliminated

KDD 15 © Eric Xing @ CMU, 2015 105

Distributed ML Algorithms

Summary

 Many parallel algorithms for both Optimization and MCMC

 They share common parallelization themes

 Embarrassingly parallel: combine results from multiple independent problems,

e.g. PSGD, EP-MCMC

 Stochastic over data: approximate functions/ gradients with expectation over

subset of data, then parallelize over data subsets, e.g. SGD

 Model-parallel: parallelize over model variables, e.g. Coordinate Descent

 Auxiliary variables: decompose problem by decoupling dependent variables,

e.g. ADMM, Auxiliary Variable MCMC

 Considerations

 Regularizers, model structure: may need sequential proximal or projection

step, e.g. Stochastic Proximal Gradient

 Data partitioning: for data-parallel, how to split data over machines?

 Model partitioning: for model-parallel, how to split model over machines? Need

to be careful as model variables are not necessarily independent of each other.

KDD 15 © Eric Xing @ CMU, 2015 106

Implementing

Distributed ML Algorithms

 Implementing high-performance distributed ML is not easy

 If not careful, can end up slower than single machine!

 System bottlenecks (load imbalance, network bandwidth & latency) are not trivial

to engineer around

 Even if algorithm is theoretically sound and has attractive

properties, still need to pay attention to system aspects

 Bandwidth (communication volume limits)

 Latency (communication timing limits)

 Data and Model partitioning (machine memory limitation, also affects comms

volume)

 Data and Model scheduling (affects convergence rate, comms volume & timing)

 Non-ideal systems behavior: uneven machine performance, other cluster users

KDD 15 © Eric Xing @ CMU, 2015 107

Implementing

Distributed ML Algorithms

 A number of ad-hoc or partial solutions, but sometimes

lacking theoretical analysis

 Major barrier: hard to analyze solutions because algorithm/systems sometimes

not fully/transparently described in papers

 Possible solution: a universal language and principles for design could facilitate

theoretical analysis of existing and new solutions

 Let us look at some open-source platforms, which distributed

ML algorithms can be implemented upon

KDD 15 © Eric Xing @ CMU, 2015 108

School of Computer Science

Open-Source Platforms

for Distributed ML

KDD 15 © Eric Xing @ CMU, 2015 109

Modern Systems for Big ML

● Just now: data-, model-parallel ML algorithms for optimization,

MCMC

● One could write distributed implementations from scratch

● Perhaps better to use an existing open source platform?

KDD 15 © Eric Xing @ CMU, 2015 110

Spark Overview [Zaharia et al., 2010]

● General-purpose system for Big Data processing
o Shell/interpreter for Matlab/R-like analytics

● MLlib = Spark’s ready-to-run ML library
o Implemented on Spark’s API

KDD 15 © Eric Xing @ CMU, 2015 111

Spark Overview [Zaharia et al., 2010]

 MLlib algorithms (v1.4)
 Classification and regression

 linear models (SVMs, logistic regression, linear regression)

 naive Bayes

 decision trees

 ensembles of trees (Random Forests and Gradient-Boosted Trees)

 isotonic regression

 Collaborative filtering

 alternating least squares (ALS)

 Clustering

 k-means

 Gaussian mixture

 power iteration clustering (PIC)

 latent Dirichlet allocation (LDA)

 streaming k-means

 Dimensionality reduction

 singular value decomposition (SVD)

 principal component analysis (PCA)

KDD 15 © Eric Xing @ CMU, 2015 112

Spark Overview [Zaharia et al., 2010]

● Key feature: Resilient Distributed Datasets (RDDs)

● Data processing = lineage graph of transforms

● RDDs = nodes

● Transforms = edges

KDD 15 © Eric Xing @ CMU, 2015 113

Source: Zaharia et al. (2012)

Spark Overview [Zaharia et al., 2010]

 RDD-based programming model

 Similar in spirit to Hadoop Mapreduce

 Functional style: manipulate RDDs via “transformations”, “actions”

 E.g. map is a transformation, reduce is an action

 Example: load file, count total number of characters

 Other transformations and actions:

 union(), intersection(), distinct()

 count(), first(), take(), foreach()

 …

 Can specify if an RDD should be “persisted” to disk

 Allows for faster recovery during cluster faults

KDD 15 © Eric Xing @ CMU, 2015 114

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)

Spark Overview [Zaharia et al., 2010]

● Benefits of Spark:

● Fault tolerant - RDDs immutable, just re-compute from lineage

● Cacheable - keep some RDDs in RAM

o Faster than Hadoop MR at iterative algorithms

● Supports MapReduce as special case

KDD 15 © Eric Xing @ CMU, 2015 115

Source: Zaharia et al. (2012)

Spark:

Faster MapR on Data-Parallel

● Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data → load as RDD → apply transforms → output result

o RDD transforms strict superset of MapR

o RDDs cached in memory, avoid disk I/O

● Spark ML library supports data-parallel ML algos, like Hadoop
o Spark and Hadoop: comparable first iter timings…

o But Spark’s later iters are much faster

KDD 15 © Eric Xing @ CMU, 2015 116

Source: ebaytechblog.com

GraphLab Overview [Low et al., 2012]

 Known as “GraphLab PowerGraph v2.2”

 Different from commercial software “GraphLab Create” by Dato.com, who

formerly developed PowerGraph v2.2

 System for Graph Programming

 Think of ML algos as graph algos

 Comes with ready-to-run “toolkits”

 ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical

models

KDD 15 © Eric Xing @ CMU, 2015 117

GraphLab Overview [Low et al., 2012]

 ML-related toolkits

 Clustering

 K-means

 Spectral

 Collaborative Filtering

 Matrix Factorization (including Non-negative, L1/L2-regularized)

 Graphical Models

 Factor graphs

 Belief propagation algorithm

 Topic Modeling

 LDA

 Other toolkits available for computer vision, graph analytics,

linear systems

KDD 15 © Eric Xing @ CMU, 2015 118

● Key feature: Gather-Apply-Scatter Programming Model

o Write ML algos as vertex programs

o Run vertex programs in parallel on each graph node

o Graph nodes, edges can have data, parameters

KDD 15 © Eric Xing @ CMU, 2015 119

Source: Gonzalez (2012)

GraphLab Overview [Low et al., 2012]

● Programming Model: GAS Vertex Programs

o 1) Gather(): Accumulate data, params from my neighbors + edges

o 2) Apply(): Transform output of Gather(), write to myself

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 120

GraphLab Overview [Low et al., 2012]

● Programming Model: GAS Vertex Programs

o 1) Gather(): Accumulate data, params from my neighbors + edges

o 2) Apply(): Transform output of Gather(), write to myself

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 121

GraphLab Overview [Low et al., 2012]

● Programming Model: GAS Vertex Programs

o 1) Gather(): Accumulate data, params from my neighbors + edges

o 2) Apply(): Transform output of Gather(), write to myself

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 122

GraphLab Overview [Low et al., 2012]

GraphLab Overview [Low et al., 2012]

 Example GAS program: Pagerank

 Programmer implements gather(), apply(), scatter() functions

KDD 15 © Eric Xing @ CMU, 2015

Source: Gonzalez et al. (OSDI 2012)

123

● Benefits of Graphlab

o Supports asynchronous execution - fast, avoids straggler problems

o Edge-cut partitioning - scales to large, power-law graphs

o Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 124

GraphLab Overview [Low et al., 2012]

● GraphLab Graph consistency models

o Guide search for “ideal” model-parallel execution order

o ML algo correct if input graph has all dependencies

● GraphLab supports asynchronous (no-waiting) execution

o Correctness enforced by graph consistency model

o Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)

KDD 15 © Eric Xing @ CMU, 2015 125

GraphLab:

Model-Parallel via Graphs

A New Framework for Large Scale Parallel
Machine Learning

(Petuum.org)

KDD 15 © Eric Xing @ CMU, 2015 126

Petuum Overview [Xing et al., 2015]

 Key modules

 Key-value store (Parameter Server) for data-parallel ML algos

 Scheduler for model-parallel ML algos

 Program ML algos in iterative-convergent style

 ML algo = (1) write update equations + (2) iterate eqns via schedule

KDD 15 © Eric Xing @ CMU, 2015 127

Petuum Overview [Xing et al., 2015]

 ML Library (Petuum v1.1):
 Topic Modeling

 LDA

 MedLDA (supervised topic models)

 Deep Learning

 Fully-connected DNN

 Convolutional Neural Network

 Matrix Factorization

 Least-squares Collaborative Filtering (with regularization)

 Non-negative Matrix Factorization

 Sparse Coding

 Regression

 Lasso Regression

 Metric Learning

 Distance Metric Learning

 Clustering

 K-means

 Classification

 Random Forest

 Logistic Regression and SVM

 Multi-class Logistic Regression

KDD 15 © Eric Xing @ CMU, 2015 128

Petuum Overview [Xing et al., 2015]

 Key-Value store (Parameter Server)

 Enables data-parallelism

 A type of Distributed Shared Memory (DSM)

 Model parameters globally shared across workers

 Programming: replace local variables with PS calls

KDD 15 © Eric Xing @ CMU, 2015 129

KV-

store

(one or more

machines)

Worker 1 Worker 2

Worker 3 Worker 4

ProcessDataPoint(i) {
 for j = 1 to M {
 old = model[j]
 delta = f(model,data(i))
 model[j] += delta
 }
}

Single

Machine

ProcessDataPoint(i) {
 for j = 1 to M {
 old = PS.read(model,j)
 delta = f(model,data(i))
 PS.inc(model,j,delta)
 }
}

Distributed

with PS

Petuum Overview [Xing et al., 2015]

 Key-Value store features:

 ML-tailored consistency model: Stale Synchronous Parallel (SSP)

 Asynchronous-like speed

 Bulk Synchronous Parallel-like correctness guarantees for ML

KDD 15 © Eric Xing @ CMU, 2015 130

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see

these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see

these updates (limited error)

Petuum Overview [Xing et al., 2015]

 Scheduler

 Enables correct model-parallelism

 Can analyze ML model structure for best execution order

 Programming: schedule(), push(), pull() abstraction

KDD 15 © Eric Xing @ CMU, 2015 131

Petuum Overview [Xing et al., 2015]

 Scheduler benefits:

 ML scheduling engine: Structure-Aware Parallelization (SAP)

 Scheduled ML algos require less computation to finish

KDD 15 © Eric Xing @ CMU, 2015 132

Sharp drop

due to SAP

Petuum:

ML props = 1st-class citizen

 Error tolerance via Stale Sync Parallel KV-store

 System Insight 1: ML algos bottleneck on network comms

 System Insight 2: More caching => less comms => faster execution

KDD 15 © Eric Xing @ CMU, 2015 133

More caching (more staleness)

Petuum:

ML props = 1st-class citizen

 Harness Block dependency structure via Scheduler

 System Insight 1: Pipeline scheduler to hide latency

 System Insight 2: Load-balance blocks to prevent stragglers

KDD 15 © Eric Xing @ CMU, 2015 134

Blocks in Lasso

Regression problem

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars

for update

All Parameters and

Variables

Generate Blocks

Blocks of

variables

Check Variable

Dependencies

Petuum:

ML props = 1st-class citizen

 Exploit Uneven Convergence via Prioritizer

 System Insight 1: Prioritize small # of vars => fewer deps to check

 System Insight 2: Lowers computational cost of Scheduling

KDD 15 © Eric Xing @ CMU, 2015 135

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars

for update

All Parameters and

Variables

Generate Blocks

Blocks of

variables

Check Variable

Dependencies

Petuum Architecture and

Hadoop Ecosystem Integration

KDD 15 © Eric Xing @ CMU, 2015

HDFS (distributed storage)

YARN (resource manager, fault tolerance)

Bounded-Async

KV-store (Bösen)

Dynamic Scheduler

(Strads)

Data-Parallel API Model-Parallel API

ML application library

Hadoop Ecosystem

and others …

136

ML Programming Interface:

Needs and Considerations

 An ideal ML programming interface should make it easy to

write correct data-parallel, model-parallel ML programs

 What can be abstracted away?

 Abstract away inter-worker communication/synchronization:

 Automatic consistency models; bandwidth management through distributed shared

memory

 Abstract scheduling away from update equations:

 Easy to change scheduling strategy, or use dynamic schedules

 Abstract away worker management:

 Let ML system decide optimal number and configuration of workers

 Ideally, reduce programmer burden to just 3 things:

 Declare model, write updates, write schedule

KDD 15 © Eric Xing @ CMU, 2015 137

School of Computer Science

Systems, Architectures

for Distributed ML

KDD 15 © Eric Xing @ CMU, 2015 138

There Is No Ideal Distributed System!

 Not quite that easy…

 Two distributed challenges:

 Networks are slow

 “Identical” machines rarely perform equally

Low bandwidth,

High delay

Unequal

performance

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48
S
e
c
o
n

d
s

Compute vs Network

LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015

BSP execution:

Long sync time

Async execution:

May diverge

139

Issue: How to approach

distributed systems?

 Idealist view

 Start with simplified view of distributed

systems; develop elaborate theory

 Issues being explored:

 Information theoretic lower bounds for

communication [Zhang et al. 2013]

 Provably correct distributed

architectures, with mild assumptions

[Langford et al. 2009, Duchi and

Agarwal 2011]

 How can we build practical solutions

using these ideas?

 Pragmatist view

 Start with real-world, complex

distributed systems, and develop a

combination of theoretical guarantees

and empirical evidence

 Issues being explored:

 Fault tolerance and recovery [Zaharia

et al. 2012, Spark, Li et al. 2014]

 Impact of stragglers and delays on

inference, and robust solutions [Ho et

al. 2013, Dai et al. 2015, Petuum, Li et

al. 2014]

 Scheduling of inference computations

for massive speedups [Low et al. 2012,

GraphLab, Kim et al. 2014, Petuum]

 How can we connect these

phenomena to theoretical inference

correctness and speed?

KDD 15 © Eric Xing @ CMU, 2015 140

Why need new Big ML systems?

MLer’s view

 Focus on

 Correctness

 fewer iteration to converge,

 but assuming an ideal system, e.g.,

 zero-cost sync,

 uniform local progress

 for (t = 1 to T) {

 doThings()

 parallelUpdate(x,θ)
 doOtherThings()
}

θ
θ θ

θ
θ

θ θ θ

θ θ
θ θ θ

Parallelize over

worker threads

Share global model

parameters via RAM

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

Se
c
o
n

d
s

Compute vs Network

LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015 141

Why need new Big ML systems?

Systems View:

 Focus on

 high iteration throughput (more iter per sec)

 strong fault-tolerant atomic operations,

 but assume ML algo is a black box

 ML algos “still work” under different execution

models

 “easy to rewrite” in chosen abstraction

Non-uniform

convergence

Dynamic

structures

Error

tolerance

Agonistic of ML properties and objectives in system

design
1

1

1

1

2

2

2

2

3

3

3

3

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6
or

Synchronization model

Programming model

Shotgun with 2 machines

Single machine (shooting algorithm)

Shotgun with 4 machines flies away!

KDD 15 © Eric Xing @ CMU, 2015 142

Why need new Big ML systems?

MLer’s view

 Focus on

 Correctness

 fewer iteration to converge,

 but assuming an ideal system, e.g.,

 zero-cost sync,

 uniform local progress

 Oversimplify systems issues

 need machines to perform

consistently

 need lots of synchronization

 or even try not to communicate at all

Systems View:

 Focus on

 high iteration throughput (more iter per sec)

 strong fault-tolerant atomic operations,

 but assume ML algo is a black box

 ML algos “still work” under different execution

models

 “easy to rewrite” in chosen abstraction

 Oversimplify ML issues and/or

ignore ML opportunities

 ML algos “just work” without proof

 Conversion of ML algos across

different program models (graph

programs, RDD) is easy

for (t = 1 to T) {
 doThings()

 parallelUpdate(x,θ)
 doOtherThings()
}

1

1

1

1

2

2

2

2

3

3

3

3

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6
or

KDD 15 © Eric Xing @ CMU, 2015 143

• Nonparametric

Bayesian Models
• Graphical

Models
• Sparse Structured

I/O Regression
• Sparse Coding

• Spectral/Matrix

Methods

• Regularized

Bayesian Methods • Deep Learning • Large-Margin

Machine Learning
Models/Algorithms

• Network switches

• Infiniband

• Network attached storage

• Flash storage

• Server machines

• Desktops/Laptops

• NUMA machines

• GPUs • Cloud compute

(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution:

KDD 15 © Eric Xing @ CMU, 2015 144

• Nonparametric

Bayesian Models
• Graphical

Models
• Sparse Structured

I/O Regression
• Sparse Coding

• Spectral/Matrix

Methods

• Regularized

Bayesian Methods • Deep Learning • Large-Margin

Machine Learning
Models/Algorithms

• Network switches

• Infiniband

• Network attached storage

• Flash storage

• Server machines

• Desktops/Laptops

• NUMA machines

• GPUs • Cloud compute

(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution:

An Alg/Sys INTERFACE for Big ML

KDD 15 © Eric Xing @ CMU, 2015 145

The Big-ML “Stack” - More
than just software

Theory: Degree of parallelism, convergence analysis, sub-
sample complexity …

System: Distributed architecture: DFS, KV-store, task
scheduler…

Model: Generic building blocks: loss functions, structures,
constraints, priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt,
Spectrum …

Representation: Compact and informative features

Programming model & Interface:
High: Matlab/R
Medium: C/JAVA
Low: MPI

Hardware: GPU, flash storage, cloud …

KDD 15 © Eric Xing @ CMU, 2015 146

Markov Chain Monte Carlo Optimization

ML algorithms are

Iterative-Convergent

© Eric Xing @ CMU, 2015 KDD 15 147

δi

zij

 xij B

Ni

N

 K

δi

zij

xij B

Ni

N

 K

Read
Read +

Write

Data

Model Parameters

at iteration (t-1)

Iterative Algorithm

Intermediate Updates

Aggregate +

Transform

Updates

A General Picture of ML

Iterative-Convergent Algorithms

© Eric Xing @ CMU, 2015 KDD 15 148

Issues with Hadoop and

I-C ML Algorithms?

Naïve MapReduce not best for ML

● Hadoop can execute iterative-convergent, data-parallel ML...

o map() to distribute data samples i, compute update Δ(Di)

o reduce() to combine updates Δ(Di)

o Iterative ML algo = repeat map()+reduce() again and again

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck

Image source: dzone.com

Iteration 1 Iteration 2

KDD 15 © Eric Xing @ CMU, 2015 149

for (t = 1 to T) {
 doThings()
 parallelUpdate(x,θ)
 doOtherThings()
}

θ

θ θ

θ

θ

θ θ θ

θ θ

θ θ θ

Good Parallelization Strategy

is important

ML on

epoch 1

ML on

epoch 2

ML on

epoch 3

ML on

epoch m

Barrier ?

Write

outcome to

KV store

Write
outcome to

KV store

Write
outcome to

KV store

Write
outcome to

KV store

Collect
outcomes
and aggregate

Do nothing Do nothing Do nothing 0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

S
e
c
o
n

d
s

Compute vs Network

LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015 150

Data Parallelism

Additive Updates

KDD 15 © Eric Xing @ CMU, 2015 151

Model

(Topics)

Data (Docs) Update (MCMC

algo)

BIG DATA (billions of docs)

Example Data Parallel:

Topic Models

© Eric Xing @ CMU, 2015 KDD 15 152

Example Data Parallel:

Topic Models

KDD 15 © Eric Xing @ CMU, 2015

MCMC algo MCMC algo MCMC algo MCMC algo MCMC algo

Global shared model

153

Concatenating updates

Model Parallelism
Scheduling

Function

Read +

Write

model parameters not

updated in this

iteration
KDD 15 © Eric Xing @ CMU, 2015 154

Model (Parameter

Vector)
Data (Feature + Response

Matrices)

Update (CD algo)

BIG MODEL (100 billions of params)

Example Model Parallel:

Lasso Regression

© Eric Xing @ CMU, 2015 KDD 15 155

Example Model Parallel:

Lasso Regression

KDD 15 © Eric Xing @ CMU, 2015

156

156

A Dichotomy of Data and Model

in ML Programs

Data Parallelism Model Parallelism

KDD 15 © Eric Xing @ CMU, 2015 157

Data+Model Parallel:

Solving Big Data+Model

Model (edge weights)

Data (images)
Update

(backpropagation)

Data & Model both big!

Millions of images,

Billions of weights

What to do?

© Eric Xing @ CMU, 2015 KDD 15 158

Data+Model Parallel:

Solving Big Data+Model

KDD 15 © Eric Xing @ CMU, 2015

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo

Parameter Synchronization Channel

Tackle Deep Learning scalability

challenges by combining

data+model parallelism

159

How difficult is

data/model-parallelism?

 Certain mathematical conditions must be met

 Data-parallelism generally OK when data IID (independent,

identically distributed)

 Very close to serial execution, in most cases

 Naive Model-parallelism doesn’t work

 NOT equivalent to serial execution of ML algo

 Need carefully designed schedule

© Eric Xing @ CMU, 2015 KDD 15 160

Intrinsic Properties of ML Programs

 ML is optimization-centric, and admits an iterative convergent

algorithmic solution rather than a one-step closed form solution

 Error tolerance: often robust against limited

 errors in intermediate calculations

 Dynamic structural dependency: changing correlations

 between model parameters critical to efficient parallelization

 Non-uniform convergence: parameters

 can converge in very different number of steps

 Whereas traditional programs are transaction-centric, thus only

guaranteed by atomic correctness at every step

 Most existing platforms (e.g., Spark, GraphLab) have not yet systematically

explore and exploit above properties
KDD 15 © Eric Xing @ CMU, 2015 161

Challenges in Data Parallelism

 Existing ways are either safe/slow (BSP), or fast/risky (Async)

 Challenge 1: Need “Partial” synchronicity

 Spread network comms evenly (don’t sync unless needed)

 Threads usually shouldn’t wait – but mustn’t drift too far apart!

 Challenge 2: Need straggler tolerance

 Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?

KDD 15 © Eric Xing @ CMU, 2015 162

Is there a middle ground for data-

parallel consistency?

 Challenge 1: “Partial” synchronicity

 Spread network comms evenly (don’t sync unless needed)

 Threads usually shouldn’t wait – but mustn’t drift too far apart!

 Challenge 2: Straggler tolerance

 Slow threads must somehow catch up

KDD 15 © Eric Xing @ CMU, 2015

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Force threads to sync
up

2 3 4 5 6

Thread 1 catches up by
reducing network comms

Time
163

High-Performance Consistency Models

for Fast Data-Parallelism [Ho et al., 2013]

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model

• Allow threads to run at their own pace, without synchronization

• Fastest/slowest threads not allowed to drift >S iterations apart

• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see

these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see

these updates (possible error)

Consequence:

• Asynchronous-like speed, BSP-like ML correctness guarantees

• Guaranteed age bound (staleness) on reads

• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

KDD 15 © Eric Xing @ CMU, 2015 164

Improving Bounded-Async via

Eager Updates [Dai et al., 2015]

 Eager SSP (ESSP) protocol

 Use spare bandwidth to push

fresh parameters sooner

 Figure: difference in stale

reads between SSP and ESSP

 ESSP has fewer stale reads;

lower staleness variance

 Faster, more stable

convergence (theorems later)

KDD 15 © Eric Xing @ CMU, 2015 165

Enjoys Async Speed, yet BSP

Guarantee, across algorithms

 Scale up Data Parallelism without being limited by long BSP

synchronization time

 Effective across different algorithms, e.g. LDA, Lasso, Matrix

Factorization:

KDD 15 © Eric Xing @ CMU, 2015

LASSO Matrix Fact. LDA

166

Challenges in Model Parallelism

 Recall Lasso regression:

KDD 15 © Eric Xing @ CMU, 2015

A huge number of parameters

(e.g.) J = 100M

N

J

J

Model

=

167

 Concurrent updates of may induce errors

Sync

Sequential updates Concurrent updates

Induces parallelization error

Need to check x1
Tx2

before updating

parameters

Challenge 1:

Model Dependencies

KDD 15 © Eric Xing @ CMU, 2015 168

Challenge 2: Uneven

Convergence Rate on Parameters

• Convergence time determined by slowest parameters

• How to make slowest parameters converge more

quickly?

KDD 15 © Eric Xing @ CMU, 2015

Parameters converge at similar rates Parameters converge at different rates

C
o

n
v
e
rg

e
d

C
o

n
v
e
rg

e
d

Remaining time to convergence Remaining time to convergence

169

Is there a middle ground for

model-parallel consistency?

 Existing ways are either safe but slow, or fast but risky

 Challenge 1: need approximate but fast model partition

 Full representation of data/model, and explicitly compute all

dependencies via graph cut is not feasible

 Challenge 2: need dynamic load balancing

 Capture and explore transient model dependencies

 Explore uneven parameter convergence

KDD 15 © Eric Xing @ CMU, 2015

???

Graph Partition Random Partition

Is full consistency really

necessary for ML?

170

 Structure-Aware Parallelization

(SAP) [Lee et al., 2014; Kumar et al., 2014]
scheduler

key-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

scheduler
key-value

store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

Careful model-parallel execution:
 Structure-aware scheduling

 Variable prioritization

 Load-balancing

scheduler
key-value

store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

 Simple programming:
 Schedule()

 Push()

 Pull()

KDD 15 © Eric Xing @ CMU, 2015 171

Schedule 1: Priority-based [Lee et al., 2014]

 Choose params to update based on convergence progress

 Example: sample params with probability proportional to their recent change

 Approximately maximizes the convergence progress per round

KDD 15 © Eric Xing @ CMU, 2015

Priority-based scheduling Shotgun [Bradley et al. 2011]

Uniform

distribution

172

Schedule 2: Block-based

(with load balancing) [Kumar et al., 2014]

KDD 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks

Run different-colored blocks in parallel

Blocks with less data/para or experience less

straggling run more iterations

Automatic load-balancing + better convergence

173

Structure-aware Dynamic Scheduler

(STRADS) [Lee et al., 2014, Kumar et al., 2014]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.

barrier

Sample Variables

to be Updated ~ p(j)

Check

Variable

Dependency

All Variables

Generate

Blocks of

Variables

STRADS

• Priority Scheduling

• Block scheduling

[Kumar, Beutel, Ho and Xing, Fugue:

Slow-worker agnostic distributed

learning, AISTATS 2014]

KDD 15 © Eric Xing @ CMU, 2015 174

Avoids dependent parallel updates,

attains near-ideal convergence speed

 STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
b

je
c
ti
v
e

STRADS

Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

S
E

STRADS

GraphLab

0 1 2 3 4 5

x 10
4

−3.5

−3

−2.5
x 10

9

2.5M vocab, 5K topics
32 machines

Seconds

L
o

g
−

L
ik

e
lih

o
o
d

STRADS

YahooLDA

Lasso MF LDA

KDD 15 © Eric Xing @ CMU, 2015 175

Efficient for large models

 Model is partitioned => can run larger models on same

hardware

KDD 15 © Eric Xing @ CMU, 2015

Lasso MF LDA

176

School of Computer Science

Theory of Real

Distributed ML Systems

KDD 15 © Eric Xing @ CMU, 2015 177

Why study parallel ML theory?

 What sequential guarantees still hold in parallel setting?

 Under what conditions?

 Growing body of literature for “ideal” parallel systems

 Serializable– equivalent to single-machine execution in some sense

 Focused on per-iteration analysis

 Abstract away computational/comms cost

 Predicting real-world running time requires these costs to be put back

 “Real-world” parallel systems a work in progress

 Asynchronous or bounded-async approaches can empirically work better than

synchronous approaches

 Need additional theoretical analysis to understand why

 Async => no serializability… why does it still work?

 Parallelization requires data and/or model partitioning… many strategies exist

 Want partitioning strategies that are provably correct

 Need to determine when/where independence is violated, and what impact such violation

has on algorithm correctness

KDD 15 © Eric Xing @ CMU, 2015 178

Challenges in real-world

distributed systems

 Real-world systems need asynchronous execution and load

balancing

 Synchronous system: load imbalances => slow workers => waiting at barriers

 Need load balancing to reduce load at slow workers

 Need asynchronous execution so faster workers can proceed without waiting

 Solution 1: key-value stores

 Automatically manages communication with bounded asynchronous guarantees

 Solution 2: scheduling systems

 Automatically balances workload across workers; also performs prioritization and

dependency checking

KDD 15 © Eric Xing @ CMU, 2015 179

Communication strategies

 Data parallel

 Partition data across workers

 Or fetch small batches of data in an online/streaming fashion

 Communicate model as needed to workers

 e.g. key-value store with bounded asynchronous model – theoretical consequences?

 Model parallel

 Partition model across workers

 Model partitions can change dynamically during execution – theoretical consequences?

 Send data to workers as needed (e.g. from shared database)

 Or place full copy of data on each worker (since data is immutable)

 Data + Model parallel?

 Partition both data and model across workers

 Wide space of strategies; need to reduce model and data communication

 Reduce model communication by exploiting independence between variables

 Reduce data and model communication via broadcast strategies, e.g. Halton sequence

KDD 15 © Eric Xing @ CMU, 2015 180

Bridging Models

for Parallel Programming

 Bulk Synchronous Parallel [Valiant, 1990] is a bridging model

 Bridging model specifies how/when parallel workers should compute, and

how/when workers should communicate

 Key concept: barriers

 No communication before barrier, only computation

 No computation inside barrier, only communication

 Computation is “serializable” – many sequential theoretical guarantees can be

applied with no modification

 Bounded Asynchronous Parallel (BAP) bridging model

 Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]

 Workers re-use old version of parameters, up to s iterations old – no need to barrier

 Workers wait if parameter version older than s iterations

KDD 15 © Eric Xing @ CMU, 2015

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

181

Types of Convegence

Guarantees

 Regret/Expectation bounds on parameters

 Better bounds => better convergence progress per iteration

 Probabilistic bounds on parameters

 Similar meaning to regret/expectation bounds, usually stronger in guarantee

 Variance bounds on parameters

 Lower variance => higher stability near optimum => easier to determine

convergence

 For data parallel?

 For Model parallel?

 For Data + model parallel?

KDD 15 © Eric Xing @ CMU, 2015 182

BAP Data Parallel:

Can we do value-bounding?

 Idea: limit model parameter

difference Δθi-j = ||θi – θj|| between

machines i,j to < a threshold

 Does not work in practice!

 To guarantee that Δθi-j has not

exceeded the threshold, machines must

wait to communicate with each other

 No improvement over synchronous

execution!

 Rather than controlling parameter

difference via magnitude, what

about via iteration count?

 This is the (E)SSP communication

model…

KDD 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5 Worker 6

Worker 7

Δθ1-2

Δθ1-3

Δθ1-4

Δθ1-5

Δθ1-6

Δθ1-7

183

BAP Data Parallel:

(E)SSP model [Ho et al., 2013; Dai et al., 2015]

KDD 15 © Eric Xing @ CMU, 2015

Stale Synchronous Parallel (SSP)

• Allow threads to run at their own pace, without synchronization

• Fastest/slowest threads not allowed to drift >S iterations apart

• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see

these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see

these updates (possible error)

Consequence:

• Asynchronous-like speed, BSP-like ML correctness guarantees

• Guaranteed age bound (staleness) on reads

• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

184

BAP Data Parallel:

(E)SSP Regret Bound [Ho et al., 2013]

 Goal: minimize convex

(Example: Stochastic Gradient)

 L-Lipschitz, problem diameter bounded by F2

 Staleness s, using P threads across all machines

 Use step size

 (E)SSP converges according to

 Where T is the number of iterations

 Note the RHS interrelation between (L, F) and (s, P)

 An interaction between model and systems parameters

 Stronger guarantees on means and variances can also be proven

Difference between

SSP estimate and true optimum

KDD 15 © Eric Xing @ CMU, 2015 185

Intuition:

Why does (E)SSP converge?

 Number of missing updates bounded

 Partial, but bounded, loss of serializability

 Hence numeric error in parameter also bounded

 Later in this tutorial – formal theorem

 KDD 15 © Eric Xing @ CMU, 2015 186

SSP versus ESSP:

What is the difference?

 ESSP is a systems improvement over SSP communication

 Same maximum staleness guarantee as SSP

 Whereas SSP waits until the last second to communicate…

 … ESSP communicates updates as early as possible

 What impact does ESSP have on convergence speed and

stability?

KDD 15 © Eric Xing @ CMU, 2015 187

Theorem: Given L-Lipschitz objective ft and stepsize ht,

BAP Data Parallel:

(E)SSP Probability Bound
[Dai et al., 2015]

Let real staleness observed by system be
Let its mean, variance be ,

Explanation: the (E)SSP distance between true optima and current
estimate decreases exponentially with more iterations. Lower staleness
mean, variance , improve the convergence rate.

Take-away: controlling staleness mean , variance (on top of max
staleness s) is needed for faster ML convergence, which ESSP does.

KDD 15 © Eric Xing @ CMU, 2015 188

Gap between current

estimate and optimum

Penalty due to high

avg. staleness ustale

Penalty due to high

staleness var. σstale

BAP Data Parallel:

(E)SSP Variance Bound
[Dai et al., 2015]

 Theorem: the variance in the (E)SSP estimate is

 where

 and represents 5th order or higher terms in

Explanation: The variance in the (E)SSP parameter estimate monotonically
decreases when close to an optimum.
Lower (E)SSP staleness => Lower variance in parameter => Less
oscillation in parameter => More confidence in estimate quality and
stopping criterion.
Take-away: Lower average staleness (via ESSP) not only improves
convergence speed, but also yields better parameter estimates

KDD 15 © Eric Xing @ CMU, 2015 189

ESSP vs SSP: Increased stability

helps empirical performance

 Low-staleness SSP and ESSP converge equally well

 But at higher staleness, ESSP is more stable than SSP

 ESSP communicates updates early, whereas SSP waits until the last second

 ESSP better suited to real-world clusters, with straggler and multi-user issues

KDD 15 © Eric Xing @ CMU, 2015 190

Scheduled Model Parallel:

Dynamic/Block Scheduling
[Lee et al. 2014, Kumar et al. 2014]

KDD 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.

barrier

Sample Variables

to be Updated ~ p(j)

Check

Variable

Dependency

All Variables

Generate

Blocks of

Variables

STRADS

• Priority Scheduling

• Block scheduling

191

 Goal: solve sparse regression problem

 Via coordinate descent over “SAP blocks” X(1), X(2), …, X(B)

 X(b) are the data columns (features) in block (b)

 P parallel workers, M-dimensional data

 ρ = Spectral Radius[BlockDiag[(X(1))TX(1), …, (X(t))TX(t)]]; this block-diagonal

matrix quantifies the maximum level of correlation (and hence problem

difficulty) within all the SAP blocks X(1), X(2), …, X(t)

 SAP converges according to

 Where t is # of iterations

 Take-away: SAP minimizes ρ by searching for feature subsets X(1),
X(2), …, X(B) without cross-correlation => as close to P-fold speedup as

possible

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound
[Lee et al. 2014]

Gap between current

parameter estimate and optimum

SAP explicitly minimizes ρ, ensuring

as close to 1/P convergence as possible

KDD 15 © Eric Xing @ CMU, 2015 192

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal
[Xing et al. 2015]

Let be an ideal model-parallel schedule

Let be the parameter trajectory due to ideal scheduling

Let be the parameter trajectory due to SAP scheduling

Explanation: Under dynamic scheduling, algorithmic progress is

nearly as good as ideal model-parallelism.

Intuitively, this is because both ideal and SAP model-parallelism

minimize the parameter dependencies between parallel workers.

Theorem: After t iterations, we have

KDD 15 © Eric Xing @ CMU, 2015 193

Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance

 Dynamic Scheduling for Lasso regression (SMP-Lasso):

almost-ideal convergence rate, much faster than random

scheduling (Shotgun-Lasso)

KDD 15 © Eric Xing @ CMU, 2015 194

Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)
[Kumar et al. 2014]

KDD 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks

Run different-colored blocks in parallel

Blocks with less data/para or experience less

straggling run more iterations

Automatic load-balancing + better convergence

195

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1
[Kumar et al. 2014]

 Variance between iterations Sn+1 and Sn is:

 Explanation:

 higher order terms (red) are negligible

 => parameter variance decreases every iteration

 Every iteration, the parameter estimates become more stable

KDD 15 © Eric Xing @ CMU, 2015 196

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2
[Kumar et al. 2014]

 Intra-block variance: Within blocks, suppose we update the

parameters using data points. Then, variance of after

those updates is:

 Explanation:

 Higher order terms (red) are negligible

 => doing more updates within each block decreases parameter variance, leading

to more stable convergence

 Load balancing by doing extra updates is effective
KDD 15 © Eric Xing @ CMU, 2015 197

Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance

 Slow-worker Agnostic Block-Scheduling (Fugue) faster than:

 Embarrassingly Parallel SGD (PSGD)

 Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

 Slow-worker Agnostic Block-Scheduling converges to a better

optimum than asynchronous GraphLab

 Reason: more stable convergence due to block-scheduling

 Task: Imagenet Dictionary Learning

 630k images, 1k features

KDD 15 © Eric Xing @ CMU, 2015 198

BAP Model-Parallel Guarantees

 Model-parallel under synchronous setting:

 Dynamic scheduling

 Slow-worker block-based scheduling

 Synchronous slow-worker problem solved by:

 Load balancing (for dynamic scheduling)

 Allow additional iters while waiting for other workers (slow-worker scheduling)

 Work in progress: theoretical guarantees for bounded-async

model-parallel execution

 Intuition: model-parallel sub-problems are nearly independent (thanks to

scheduling)

 Perhaps better per-iteration convergence than bounded-async data-parallel

learning?

KDD 15 © Eric Xing @ CMU, 2015 199

School of Computer Science

Open Research

Issues and Topics

KDD 15 © Eric Xing @ CMU, 2015 200

The Landscape of Big ML

KDD 15 © Eric Xing @ CMU, 2015 201

The Landscape of Big ML

Trend over last 5 years:

More cores, bigger models

KDD 15 © Eric Xing @ CMU, 2015 202

The Landscape of Big ML

Possible to learn bigger, more

powerful models with only

reasonable # of cores?

KDD 15 © Eric Xing @ CMU, 2015 203

Issue: When is Big Data useful?

 Negative examples

 “Simple” regression and classification models, with fixed parameter size

 Intuition: decrease estimator variance has diminishing returns with more data.

Estimator eventually becomes “good enough”, and additional data/computation is

unnecessary

 Positive examples

 Topic models (internet/tech industry)

 DNNs (Google, Baidu, Microsoft, Facebook, etc.)

 Collaborative filtering (internet/tech industry)

 Personalized models

 Industry practitioners sometimes increase model size with more data

 Conjecture: how much data is useful really depends on model

size/capacity

KDD 15 © Eric Xing @ CMU, 2015 204

Issue: Are Big Models useful?

 In theory

 Possibly, but be careful not to

over-extend

 Beware “statistical strength”

 “When you have large

amounts of data, your appetite

for hypotheses tends to get

even larger. And if it’s growing

faster than the statistical

strength of the data, then many

of your inferences are likely to

be false. They are likely to be

white noise.” –Michael Jordan

 In practice

 Some success stories - could

there be theory justification?

 Many topics in topic models

 Capture long-tail effects of

interest; improved real-world

task performance

 Many parameters in DNNs

 Improved accuracy in vision

and speech tasks

 Publicly-visible success (e.g.

Google Brain)

KDD 15 © Eric Xing @ CMU, 2015 205

Issue: Inference Algorithms, or

Inference Systems?

 View: focus on inference algorithm

 Scale up by refining the algorithm

 Given fixed computation, finish

inference faster

 Some examples

 Quasi-Newton algorithms for

optimization

 Fast Gibbs samplers for topic

models [Yao et al. 2009, Li et al.

2014, Yuan et al. 2015, Zheng et

al, 2015]

 Locality sensitive hashing for

graphical models [Ahmed et al.

2012]

 View: focus on distributed systems

for inference

 Scale up by using more machines

 Not trivial: real clusters are

imperfect and unreliable; Hadoop

not a fix-all

 Some examples

 Spark

 GraphLab

 Petuum

KDD 15 © Eric Xing @ CMU, 2015 206

Issue: Theoretical Guarantees

and Empirical Performance

 View: establishing theoretical

guarantees gives practitioners

confidence

 Motivated by empirical science,

where guarantees are paramount

 Example: Lasso sparsistency and

consistency [Wainwright, 2009]

 Theory predicts how many

samples n needed for a Lasso

problem with p dimensions and k

non-zero elements

 Simulation experiments show very

close match with theory

 Is there a way to analyze more

complex models?

 View: empirical, industrial

evidence can provide strong

driving force for experimental

research

 Motivated by industrial practice,

particularly at internet companies

 Example: AB testing in industry

 Principled means of testing new

algorithms, feature engineering; by

experimenting on user base

 Determine if new method makes a

significant difference to click-

through rate, user adoption, etc.

KDD 15 © Eric Xing @ CMU, 2015 207

Open research topics

 Future of data-, model-parallelism, and other ML properties

 New properties, principles still undiscovered

 Potential to accelerate ML beyond naive strategies

 Deep analysis of BigML systems still limited to few ML algos

 Model of ML execution under error due to imperfect system?

 How to express more ML algorithms in table form (Spark,

Petuum), or graph form (GraphLab)

 Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics?

 What are the key elements of a generic ML programming interface?

KDD 15 © Eric Xing @ CMU, 2015 208

Acknowledgements

Garth Gibson Greg Ganger

Jin Kyu Kim Seunghak Lee Jinliang Wei

Wei Dai
Pengtao Xie

Xun Zheng

Abhimanu

Kumar

Phillip Gibbons James Cipar

KDD 15 © Eric Xing @ CMU, 2015 209

Thank You!

KDD 15 © Eric Xing @ CMU, 2015 210

