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Trees Falling in the Forest 

●Nobody knows what’s in data unless it has been 
processed and analyzed 
●Need a scalable way to automatically search, digest, index, 

and understand contents 

 

Data ≠ Knowledge 

"If a tree falls in a forest and no one is around to hear it, does it 

make a sound?"  --- George Berkeley 
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Machine Learning 
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1B+ USERS 
30+ PETABYTES 

645 million users 
500 million tweets / day 
 

100+ hours video 
uploaded every minute 
 

32 million 
pages 
 

Massive Data 
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The Scalability Challenge 

Pathetic 

Good! 
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Number of “machines” 
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for (t = 1 to T) { 
  doThings() 

     
  doOtherThings() 
} 

An ML Program 

Model Parameter Data 

This computation needs to be scaled up !  

Solved by an iterative convergent algorithm 
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Challenge 1 – 

Massive Data Scale 

Familiar problem: data from 50B devices, data 

centers won’t fit into memory of single machine 

Source: Cisco Global Cloud 

Index 

Source: The Connectivist 

D q(D) 
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Challenge 2 – 

Gigantic Model Size 

Maybe Big Data needs Big Models to extract understanding? 

But models with >1 trillion params also won’t fit! 

Source: University of 

Bonn 

D q(D) 
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Classic algorithms used for decades 

K-

means 

Logistic 

regression 

Decision 

trees 

Naive Bayes 

 

 

Challenge 3 – Inadequate support 

for newer methods 
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Google Brain  
Deep Learning  

for images: 
1~10 Billion 

model parameters 

Topic Models  
for news article 

analysis: 
Up to 1 Trillion 

model  
parameters 

      Collaborative filtering  
for Video recommendation: 

1~10 Billion 
                model  

parameters 

Multi-task Regression  
       for simplest whole-

genome analysis: 
100 million ~ 1 Billion 

model  
parameters 

  

Growing Need for Big and 

Contemporary ML Programs 
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The Need for Distributed ML 

 

 

 

 
 

 We had developed 

 a highly cost-effective model (MMTM [Ho et al., 2012]), 

 two generations of highly efficient algorithms  

 (δ-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013]) 

 and highly specialized implementations   
 

 State-of-the-art results: 1M node networks with 100 roles in a few hours, on 
just one machine, 2-3 order’s of magnitudes speed-up 

 

 But when we tried to do 10K roles in a 100M-node network: 

 Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM 

 Computation: 10K+ hrs on one machine, i.e. yrs! 

 Attempt with Hadoop failed while in FB (see later) !!! 

Say we want to analyze 10K 

roles in a 100M-node network, 

using a mixed membership 

model? 
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Many Open Questions: 

 

 When is Big Data useful? 

 

 Are Big Models useful? 

 

-- Both positive and negative answers exist …  

 

 Inference algorithms, or inference systems? 

 

 Theoretical guarantees, or empirical performance? 
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Current Solutions to Scalable ML 

 Implementations of specific ML algorithms 

 YahooLDA, Vowpal Wabbit, Caffe, Torch, … 

 Provide a finely-tuned implementation of one (or a few) ML algorithms 

 Platforms for general-purpose ML 

 Hadoop, Spark, GraphLab, Petuum, … 

 Allow others to write new ML programs 

 Why this tutorial? 

 At first glance, ML problems seem radically different 

 We introduce a formal picture of ML to “bring order to the zoo” 

 We expose ML mathematical properties to be explored and later exploited 

 We note that many ML problems can be solved by a few “workhorse” algorithms 

 We explain how to design systems around these insights – thus achieving 

scalability, with both speed and solution quality guarantees 

 We provide theoretical guarantees for the system designs, and lay out roadmap 

for further analysis  
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School of Computer Science 

 

Overview of Modern ML 
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A “Classification” of ML Models 

and Tools 

 An ML program consists of: 

 A mathematical “ML model” (from one of many families)… 

 … which is solved by an “ML algorithm” (from one of a few types) 
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• Stochastic Versions of the above Algorithms 

• MC and MCMC  • Optimization 
• Matrix and 

Spectral 

Algorithms 

• Nonparametric 

Bayesian Models 

• Graphical Models 

• Sparse Structured 

Input/Output 

Regression 
• Sparse Coding 

• Spectral/Matrix 

Methods 

• Regularized 

Bayesian Methods 

• Deep Learning • Large-Margin 

Machine Learning Model Families 

Machine Learning Algorithm Families 
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A “Classification” of ML Models 

and Tools 

 We can view ML programs as either 

 Probabilistic programs 

 Optimization programs 
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Probabilistic Programs Optimization Programs 
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Key building blocks 

of an ML program 

 ML program: f(θ,D) = L(θ,D) + r(θ) 

 Objective or Loss function: L(θ,D) 

 θ = model, D = data 

 Common examples: 

 Least squares difference between predicted value and data 

 Log-likelihood of data 

 Regularization / Prior / Structural Knowledge: r(θ) 

 Common examples: 

 L2 regularization on θ to prevent overfitting 

 L1 regularization on θ to obtain sparse solution 

 (log of) Gaussian or Laplace priors over θ 

 (log of) Dirichlet prior over θ for smoothing 

 

 Algorithm to solve for model given the data (cont’ next slide) 
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Iterative-convergent view of ML 

 ML models solved via iterative-convergent ML algorithms 
 Iterative-convergent algorithms repeat until θ is stationary. Examples: 

 Probabilistic programs: MC, MCMC, Variational Inference 

 Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent 
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New Model = Old Model + 

Update(Data) 

D q(D) D q(D) 
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Optimization Example: 

Lasso Regression 

 Data, Model 

 D = {feature matrix X, response vector y} 

 θ = {parameter vector β) 

 

 Objective L(θ,D) 

 Least-squares difference between y and Xβ: 

 

 Regularization r(θ) 

 L1 penalty on β to encourage sparsity: 

 λ is a tuning parameter 

 

 Algorithms 

 Coordinate Descent 

 Stochastic Proximal Gradient Descent 
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Optimization Example: 

Lasso Regression 
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Model (Parameter Vector) 

Data (Feature + Response Matrices) 

Update (CD algo) 

20 

Applications: 

Genetic Assays, Online Advertising 



Probabilistic Example: 

Topic Models 

 Objective L(θ,D) 

 Log-likelihood of D = {document words xij} given unknown θ = {document word 

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}: 

 

 

 

 Prior r(θ) 

 Dirichlet prior on θ = {doc-topic, word-topic distributions} 

 

 

 α, β are “hyperparameters” that control the Dirichet prior’s strength 

 

 Algorithm 

 Collapsed Gibbs Sampling 
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Probabilistic Example: 

Topic Models 
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Model (Topics) = Bk Data (Docs) = xij 

Applications: Natural Language Processing, Information Retrieval 

Update (Collapsed Gibbs sampling) 
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 ML Computation vs. Classical 

Computing Programs  

ML Program: 

optimization-centric and 

iterative convergent  

Traditional Program: 

operation-centric and 

deterministic  
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 Traditional Data Processing 

needs operational correctness … 

Example: Merge sort 

Sorting 

error: 2 

after 5 

Error persists and is 

not corrected 
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… but ML Algorithms 

can Self-heal 
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 ML is optimization-centric, and admits an iterative convergent 

algorithmic solution rather than a one-step closed form solution 
 

 Error tolerance: often robust against limited 

 errors in intermediate calculations 
 

 Dynamic structural dependency: 

 changing correlations between model parameters  

 critical to efficient parallelization  
 

 Non-uniform convergence: parameters 

 can converge in very different number of steps 

 

 

 Whereas traditional programs are transaction-centric, thus only 

guaranteed by atomic correctness at every step  
 

More Intrinsic Properties of ML 

Programs 
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Why come up with 

an ML classification? 

 An ML classification helps to solve ML algorithm challenges 

systematically 

 No need to invent new algorithms for each new ML model or variant 

 Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve 

entire classes of models 

 For each new ML model, determine which ML class it falls under 

 Then apply the most appropriate workhorse algorithm for that class 

 

 Next tutorial section: Distributed ML Algorithms 

 We present a number of “workhorse” algorithms: 

 Basic form 

 Which units can be parallelized 

 What risks are incurred by parallelization (e.g. error or non-convergence) 

 Examples of scalable realizations (software) 
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School of Computer Science 

 
Distributed ML Algorithms 
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for (t = 1 to T) { 
  doThings() 

     
  doOtherThings() 
} 

An ML Program 

Model Parameter Data 

This computation needs to be parallelized!  

Solved by an iterative convergent algorithm 
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Challenge 

 Optimization programs: 

 

 

 

 

A huge number of parameters  

(e.g.) J = 1B 

N 

M 

M = 

A huge volume of data 

(e.g.) N = 1B 
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Challenge 

 Probabilistic programs   

 

topic doc 

(~ 1B) 

topic 

word (~ 1M) 

topic 

(~ 1M) 
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Parallelization Strategies 

KDD 15 © Eric Xing @ CMU, 2015 

Data Parallel 

New Model = Old Model + 

Update(Data) 

D q(D) 
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Parallelization Strategies 

Data Parallel Model Parallel 

New Model = Old Model + 

Update(Data) 

D q(D) D q(D) 
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Outline:  

Optimization & MCMC Algorithms 

 Optimization Algorithms 

 Stochastic gradient descent 

 Coordinate descent 

 Proximal gradient methods 

 ISTA, FASTA, Smoothing proximal gradient 

 ADMM 

 

 Markov Chain Monte Carlo Algorithms 

 Auxiliary Variable methods 

 Embarrassingly Parallel MCMC 

 Parallel Gibbs Sampling 

 Data parallel 

 Model parallel 
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Example Optimization Program: 

Sparse Linear Regression 

)(
2

1
min

2

2
βXβy

β
 

Data fitting Regularization 

Data fitting part:  

 - find β that fits into the data 

 - Squared loss, logistic loss, hinge loss, etc 

 

Regularization part:  

 - induces sparsity in β.  

           - incorporates structured information into the model  
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Example Optimization Program: 

Sparse Linear Regression 

)(
2

1
min

2

2
βXβy

β
 

Examples of regularization             : )(β
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jlasso

1
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G

group

g
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2
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)(βtree
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g

gβ
j

j

2

2
)(where 

Sparsity 

Structured sparsity 

(sparsity + structured information) 
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Algorithm I: 

Stochastic Gradient Descent 

 Consider an optimization problem: 

 

 

 

 Classical gradient descent: 

 

 Stochastic gradient descent: 

 Pick a random sample di 

 Update parameters based on noisy approximation of the true gradient  
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 SGD converges almost surely to  

a global optimal for convex problems 

 

 

 Traditional SGD compute gradients based on a single 

sample 

 

 Mini-batch version computes gradients based on multiple 

samples 

 Reduce variance in gradients due to multiple samples 

 Multiple samples => represent as multiple vectors => use vector 

computation => speedup in computing gradients 

 

 

Stochastic Gradient Descent 
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Parallel Stochastic Gradient 

Descent 

 Parallel SGD: Partition data to different workers; all workers 

update full parameter vector 

 

 Parallel SGD [Zinkevich et al., 2010]   

 

 

 

 

 

 

 PSGD runs SGD on local copy of params in each machine 

 

 

Input 

Data 

Input 

Data 

Input 

Data 
split Update local copy 

of ALL params 

Update local copy 

of ALL params 

aggregate 

Update ALL 

params 

Input 

Data 

Input 

Data 

Input  

Data 
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Hogwild!: Lock-free approach to 

PSGD [Recht et al., 2011] 

 Goal is to minimize a function in the form of 

 

 

 

 e denotes a small subset of parameter indices 

 xe denotes parameter values indexed by xe 

 

 Key observation: 

 Cost functions of many ML problems can be represented by f(x) 

 In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is 

applied only a small number of parameters in x 
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Hogwild!: Lock-free approach to 

PSGD [Recht et al., 2011] 

 Example:  

 Sparse SVM 

 

 

 z is input vector, and y is a label; (z,y) is an elements of E  

 Assume that zα are sparse 

 Matrix Completion 

 

 

 Input A matrix is sparse 

 

 Graph cuts 

 

 

 W is a sparse similarity matrix, encoding a graph 
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Hogwild! Algorithm [Recht et al., 2011] 

 Hogwild! algorithm: iterate in parallel for each core 

 Sample e uniformly at random from E 

 Read current parameter xe; evaluate gradient of function fe 

 Sample uniformly at random a coordinate v from subset e 

 Perform SGD on coordinate v with small constant step size 

 

 Advantages 

 Atomically update single coordinate, no mem-locking 

 Takes advantage of sparsity in ML problems 

 Near-linear speedup on various ML problems, on single machine 

 

 Excellent on single machine, less ideal for distributed 

 Atomic update on multi-machine challenging to implement; inefficient and slow 

 Delay among machines requires explicit control… why? (see next slide) 
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The cost of uncontrolled delay – 

slower convergence [Dai et al. 2015] 

 Theorem: Given lipschitz objective ft and step size ηt, 

 

 

 

 where 

 Where L is a lipschitz constant, and εm and εv are the mean and variance of the 

delay 

 

 Intuition: distance between current estimate and optimal value 

decreases exponentially with more iterations 

 But high variance in the delay εv incurs exponential penalty! 

 Distributed systems exhibit much higher delay variance, 

compared to single machine 
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The cost of uncontrolled delay – 

unstable convergence [Dai et al. 2015] 

 Theorem: the variance in the parameter estimate is 

 

 

 Where 

 and       represents 5th order or higher terms, as a function of the delay εt 

 

 Intuition: variance of the parameter estimate decreases near 

the optimum 

 But delay εt increases parameter variance => instability during convergence 

 Distributed systems have much higher average delay, 

compared to single machine 
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Parallel SGD with 

Key-Value Stores 

 We can parallelize SGD via 

 Distributed key-value store to share parameters 

 Synchronization scheme to synchronize parameters 

 

 Shared key-value store provides easy interface to read/write 

shared parameters  

 

 Synchronization scheme determines how parameters are 

shared among multiple workers 

 Bulk synchronous parallel (e.g., Hadoop) 

 Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014] 

 Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015] 
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Parallel SGD with 

Bounded Async KV-store 

 Stale synchronous parallel (SSP) is a synchronization model 

with bounded staleness – “bounded async” 

 Fastest and the slowest workers are ≤s clocks apart 
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Example KV-Store Program: 

Lasso 

 Lasso example: want to optimize 

 

 

 Put β in KV-store to share among all workers 

 Step 1: SGD: each worker draws subset of samples Xi 

 Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient 

 

 

 Step 2: Proximal operator: perform soft thresholding on β 

 

 Can be done at workers, or at the key-value store itself 

 Bounded Asynchronous synchronization allows fast read/write 

to β, even over slow or unreliable networks 
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Bounded Async KV-store: 

Faster and better convergence 
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Algorithm II: 

Coordinate Descent 

Update each regression coefficient in a cyclic manner 

1st iteration 

1 2 3 J
2st iteration 

1 2 3 J

 

 

 

 

 

 

 Pros and cons 

 Unlike SGD, CD does not involve learning rate 

 If CD can be used for a model,  it is often comparable to the state-of-the-art 

(e.g. lasso, group lasso) 

 However, as sample size increases, time for each iteration also increases 
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Example: Coordinate Descent for 

Lasso  

 

 

 

 

 Set a subgradient to zero: 

 

 

 

 Assuming that                , we can derive update rule: 


j

j
2

22

1
minˆ Xβyβ
β

0)(  j

T

j tXβyx

1j

T

j
xx









 


 ),(
jl

ll

T

jj xS yx
Soft thresholding 

 ))((),(  xxsignxS

Standardization 
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Example: Block Coordinate 

Descent for Group Lasso  

 

 

 

 

 Set it to zero: 

 

 

 

 In a similar fashion, we can derive update rule for group g 


j

j
2

22

1
minˆ Xβyβ
β

gXβyx  ju j

T

j ,0)( 

Iterate over each 

group of coefficients 
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Parallel Coordinate Descent 
[Bradley et al. 2011] 

 Shotgun, a parallel coordinate descent algorithm 

 Choose parameters to update at random 

 Update the selected parameters in parallel 

 Iterate until convergence 

 

 When features are nearly independent, Shotgun scales 

almost linearly  

 Shotgun scales linearly up to             workers, where ρ is spectral radius of ATA 

 For uncorrelated features, ρ=1; for exactly correlated features ρ=d 

 No parallelism if features are exactly correlated! 
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Intuitions for Parallel Coordinate 

Descent 

 Concurrent updates of parameters are useful when features 

are uncorrelated 

 

 

 

 

 

 

 Updating parameters for correlated features may slow down 

convergence, or diverge parallel CD in the worst case 

 To avoid updates of parameters for correlated features, block-greedy CD has 

been proposed 
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Uncorrelated features Correlated features 

Source: 

[Bradley et al., 2011] 



Block-greedy Coordinate Descent 
[Scherrer et al., 2012] 

 Block-greedy coordinate descent generalizes various parallel 

CD strategies 

 e.g. Greedy-CD, Shotgun, Randomized-CD 

 Alg: partition p params into B blocks; iterate: 

 Randomly select P blocks 

 Greedily select one coordinate per P blocks 

 Update each selected coordinate 

 

 Sublinear convergence O(1/k) for separable regularizer r : 

 

 Big-O constant depends on the maximal correlation among the B blocks 

 Hence greedily cluster features (blocks) to reduce correlation 
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Parallel Coordinate Descent with 

Dynamic Scheduler 
[Lee et al., 2014] 

 STRADS (STRucture-Aware Dynamic Scheduler) allows 

scheduling of concurrent CD updates 

 STRADS is a general scheduler for ML problems 

 Applicable to CD, and other ML algorithms such as Gibbs sampling 

 

 STRADS improves CD performance via 

 Dependency checking   

 Update parameters which are nearly independent => small parallelization error 

 Priority-based updates   

 More frequently update those parameters which decrease objective function faster 
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Example Scheduler Program: 

Lasso 

 Schedule step: 

 Prioritization: choose next variables βj to update, with probability proportional to 

their historical rate of change 

 

 

 Dependency checking: do not update βj, βk in parallel if feature dimensions j 

and k are correlated 

 

 Update step: 

 For all βj chosen in Schedule step, in parallel, perform coordinate descent update 

 

 

 

 

 Repeat from Schedule step 
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 Priority-based scheduling converges faster than Shotgun 

(random) scheduling 

0 500 1000
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0.1
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O
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c
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v
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STRADS

Lasso−RR

Comparison:  

priority vs. random-scheduling  
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Advanced 

Optimization Techniques 

 What if simple methods like SPG, CD are not adequate?  

 

 Advanced techniques at hand 

 Complex regularizer: PG 

 Complex loss: SPG 

 Overlapping loss/regularizer: ADMM 

 

 How to parallelize them? Must understand math behind 

algorithms 

 Which terms should be computed at server  

 Which terms can be distributed to clients  

 …  
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When Constraints Are Complex:  

 -- Algorithm III: Proximal Gradient (a.k.a. ISTA) 

 f: loss term, smooth (continuously differentiable) 

 g: regularizer, non-differentiable (e.g. 1-norm) 

Proximal gradient 

•  g represents some simple function 

• e.g., 1-norm, constraint C, etc.  

 

Projected gradient 

•  g represents some constraint   
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Algorithm III:  

Proximal Gradient (a.k.a. ISTA) 

 PG hinges on the proximal map [Moreau, 1965]: 

 

 Treated as black-box in PG 

 Need proximal map efficiently computable, better closed-form 

 True when g is separable and “simple”, e.g. 1-norm (separable in each 

coordinate), non-overlapping group norm, etc. 

 Can be demanding if g = g1+g2, but vars in g1, g2 overlap 

 [Yu, 2013] gave sufficient conditions for when g = g1+g2 can 

be easily handled: 

 

 Useful when         and          available in closed-forms 

 E.g. fused lasso (Friedman et al.'07):  
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Accelerated PG (a.k.a. FISTA) 
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008] 

 PG convergence rate  

 Can be boosted to   

 Same Lipschitz gradient assumption on f; similar per-step complexity! 

 Lots of follow-up work to the papers cited above 

 

 
Proximal Gradient Accelerated Proximal Gradient 
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Parallel (Accelerated) PG 

 Bulk Synchronous Parallel Accelerated PG (exact) 

 [Chen and Ozdaglar, 2012] 

 Asynchronous Parallel (non-accelerated) PG (inexact) 

 [Li et al., 2014] Parameter Server 

 General strategy: 

1. Compute gradients on workers 

2. Aggregate gradients on servers 

3. Compute proximal operator on servers 

4. Compute momentum on servers 

5. Send result wt+1 to workers and repeat 

 Can apply Hogwild-style asynchronous updates to non-

accelerated PG, for empirical speedup 

 Open question: what about accelerated PG? What happens theoretically and 

empirically to accelerated momentum under asynchrony? 
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When Objective Is Not Smooth: 

 -- Moreau Envelope Smoothing 

 So far need f to have Lipschitz cont grad, obtained O(1/t2) 

 What if not ? 

 Can use subgradient, with diminishing step size     O(1/sqrt(t)) 

 Huge gap !! 

 Smoothing comes into rescue, if f itself is H-Lipschitz cont 

 Approx f with something nicer, like Taylor expansion in calculus 101 

 Replace f with its Moreau envelope function 

 

 

 

 f(w) = |w|, envelope        is Huber’s func (blue curve) 

 Minimizer gives the proximal map       (red curve) 

Prop. 
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Smoothing Proximal Gradient 
[Chen et al., 2012] 

 Use Moreau envelope as smooth approximation 

 Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984] 

 Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976] 

 Proximal point alg = PG, when  

 Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012] 

 

 

 

 

 With                       , SPG converges at 

 

 Improves subgradient  

 Requires both efficient        and         

 

Smoothing Proximal Gradient 
original 

approx. 

KDD 15 © Eric Xing @ CMU, 2015 64 



Parallel SPG? 

 No known work yet 

 Possible strategy: 

1. Compute smoothed gradients on workers 

2. Aggregate smoothed gradients on servers 

3. Compute proximal operator on servers 

4. Compute momentum on servers 

5. Send result wt+1 to workers and repeat 

 

 The above strategy is exact under Bulk Synchronous Parallel 

(just like accelerated PG). 

 Not clear how asynchronous updates impact smoothing+momentum 

 Open research topic 

KDD 15 © Eric Xing @ CMU, 2015 65 



When Variables Are Coupled:  

 -- Algorithm IV: ADMM 

 

 

 

 Numerically challenging because 

 Function f or g nonsmooth or constrained (i.e., can take value     ) 

 Linear constraint couples the variables w and z 

 Large scale, interior point methods NA 

 Naively alternating x and z does not work 

 Min w2  s.t.  w + z = 1;    optimum clearly is w = 0 

 Start with say w = 1  z = 0  w = 1  z = 0 …  

 However, without coupling, can solve separately w and z 

 Idea: try to decouple vars in the constraint! 

 uncoupled   coupled 

where 

Canonical form: 
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Example: Empirical Risk 

Minimization (ERM) 

 Each i corresponds to a training point (xi, yi) 

 Loss fi measures the fitness of the model parameter w 

 least squares:                                    

 support vector machines:                                       

 boosting:   

 logistic regression:  

 g is the regularization function, e.g.            or  

 Vars coupled in obj, but not in constraint (none) 

 Reformulate: transfer coupling from obj to constraint 

 Arrive at canonical form, allow unified treatment later 

 coupled 
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How to: variable duplication 

 Duplicate variables to achieve canonical form 

 

 

 

 

 

 

 Global consensus constraint:  

 All wi must (eventually) agree 

 Downside: many extra variables, increase problem size 

 Implicitly maintain duplicated variables 
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Augmented Lagrangian 

 Intro Lagrangian multiplier     to decouple variables 

 

 

 

 

     : augmented Lagrangian 

 More complicated min-max problem, but no coupling constraints 

where 

Canonical form: 
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Algorithm IV: 

ADMM 

 Fix dual     , block coordinate descent on primal w, z 

 

 

 

 Fix primal w, z, gradient ascent on dual  

 

 

 Step size     can be large, e.g.  

 Usually rescale                    to remove 
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Row partition (data parallel) 

 

 

 each i corresponds to a (block of) training data Ai 

 all summands fi share the same global variable z 

 all ERM in this form: SVM, lasso, logistic regression, etc. 

 parallellize by duplicating z into w1, … wn 

 

 

 

 

 

 

 Exact Synchronization (bulk sync parallel) needed 

 

worker machine i server 
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Column partition (model parallel) 

 in columns data                       , variables 

 Each function gj have its own variable wj 

 All variables wj coupled in f 

 parallelize by adding auxiliary variable 

 

 

 
 

 Exact Synchronization (bulk sync parallel) needed 

 

worker machine j server 
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Asynchronous Parallel ADMM 
[Zhang & Kwok, 2014] 

 Only simplified consensus problem being studied: 

 

 

 Can distribute the primal updates for each wi 

 

 

 But dual update                           can happen only after all 

primal updates – barrier bottleneck 

 How to alleviate the barrier bottleneck? 

 Asynchronously execute dual update after seeing s out of n primal updates 

 Condition: no machine is too far behind 

 Can be achieved with bounded staleness [Ho et al., 2013] 

 Asynchronous convergence proved in [Zhang & Kwok, 2014] 
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Outline:  

Optimization & MCMC Algorithms 

 Optimization Algorithms 

 Stochastic gradient descent 

 Coordinate descent 

 Proximal gradient methods 

 ISTA, FASTA, Smoothing proximal gradient 

 ADMM 

 

 Markov Chain Monte Carlo Algorithms 

 Auxiliary Variable methods 

 Embarrassingly Parallel MCMC 

 Parallel Gibbs Sampling 

 Data parallel 

 Model parallel 
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Example Probabilistic Program: 

Topic Models 

 

 

 

 

 Generative model 

 Fit topics to each word xij in each doc i 

 Uses categorical distributions with parameters δ and B 

 

 Parameter priors 

 Induce sparsity in δ and B 

 Can also incorporate structure 

 E.g. asymmetric prior 
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Inference for Probabilistic 

Programs: MCMC and SVI 

δi 

zij 

 xij  B 

Ni 

N 

  K 

Markov Chain Monte Carlo: 
Randomly sample each variable in sequence 

Next set of slides on this 

Variational Inference: 
Gradient ascent on variables 

Can be treated as an optimization problem 

δi 

zij 

xij  B 

Ni 

N 

  K 
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Preliminaries: 

Speeding up sequential MCMC 

 Technique 1: Alias tables 

 Sample from categorical distribution in amortized O(1) 

 “Throw darts at a dartboard” 

 Ex: probability distribution [0.5, 0.25, 0.25] 

 => alias table {1, 1, 2, 3} => draw from table uniformly at random 

 Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015] 

 Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k) 

 Propose z1 from Pevidence(k) 

 Accept/Reject z1 

 Propose z2 from Pprior(k) 

 Accept/Reject z2 … repeat 

 Pprior(k), Pevi(k) cheap to compute with alias table 

 Other speedup techniques 

 Stochastic Gradient MCMC 

 Stochastic Variational Inference 
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Parallel and Distributed MCMC: 

Classic methods 

 Classic parallel MCMC solution 1 

 Take multiple chains in parallel, take average/consensus between chains. 

 But what if each chain is very slow to converge? 

 Need full dataset on each process – no data parallelism! 

 

 

 

 

 

 

 

Chain on core 1 

Chain on core 2 

Chain on core 3 

Not converged Converged 
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Parallel and Distributed MCMC: 

Classic methods 

 Classic parallel MCMC solution 2 

 Sequential Importance Sampling 

 Rewrite distribution over n variables as telescoping product over proposals q(): 

 

 

 SIS algorithm: 

● Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1) 

● Parallel compute unnorm. wgts. 

 

● Compute normalized weights wi
n by normalizing ri

n 

 

 Drawback: variance of SIS samples increases exponentially with n 

 Need resampling + take many chains to control variance 

 

 Let us look at newer solutions to parallel MCMC… 
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Solution I: Induced Independence 

via Auxiliary Variables [Dubey et al. 2013, 2014] 

 Auxiliary Variable Inference: reformulate model as P 

independent models 

 Example below: Dirichlet Process for mixture models 

 Also applies to Hierarchical Dirichlet Process for topic models 

 

 AV model (left) equivalent to standard DP model (right) 
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Solution I: Induced Independence 

via Auxiliary Variables [Dubey et al., 2013, 2014] 

● Why does it work? A mixture over Dirichlet processes is 

equivalent to a Dirichlet processes 

 

DP on Processor 1 

DP on Processor P 

Dirichlet Mixture over 

Processor DPs 1...P 
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Solution I: Induced Independence 

via Auxiliary Variables [Dubey et al., 2013, 2014] 

 Parallel inference algorithm: 

 Initialization: assign data randomly across P Dirichlet Processes; assign each 

Dirichlet Process to one worker p=1..P 

 Repeat until convergence: 

 Each worker performs Gibbs sampling on local data within its DP 

 Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings: 

 For each cluster c, propose a new DP q=1..P 

 Compute proposal probability of c moving to p 

 Acceptance ratio depends on cluster size 

 

 Can be done asynchronously in parallel without affecting 

performance 
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Solution II: Embarrassingly Parallel 

(but correct) MCMC [Neiswanger et al., 2014] 

 High-level idea: 

 Run MCMC in parallel on data subsets; no communication between machines. 

 Combine samples from machines to construct full posterior distribution samples. 

 

 Objective: recover full posterior distribution 

 

 

 Definitions: 

 Partition data into M subsets 

 Define m-th machine’s “subposterior” to be  

 Subposterior: “The posterior given a subset of the observations with an underweighted 

prior”. 
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Embarassingly Parallel MCMC 

 Algorithm 

1. For m=1…M independently in parallel, draw samples from each subposterior 

2. Estimate subposterior density product                                           (and thus the 

full posterior                 ) by “combining subposterior samples” 

 

 “Combine subposterior samples” via nonparametric estimation 

1. Given T samples                    from each subposterior         : 

 Construct Kernel Density Estimate (Gaussian kernel, bandwidth h): 

 

 

2. Combine subposterior KDEs: 

 

 

 where 
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Embarassingly Parallel MCMC 

 Simulations: 

 More subposteriors = tighter estimates 

 EPMCMC recovers correct parameter 

 Naïve subposterior averaging does not! 
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Solution III: 

Parallel Gibbs Sampling 

 Many MCMC algorithms 

 Sequential Monte Carlo [Canini et al., 2009] 

 Hybrid VB-Gibbs [Mimno et al., 2012] 

 Langevin Monte Carlo [Patterson et al., 2013] 

 … 

 

 Common choice in tech/internet industry: 

 Collapsed Gibbs sampling [Griffiths and Steyvers, 2004] 

 e.g. topic model Collapsed Gibbs sampler: 
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Properties of 

Collapsed Gibbs Sampling (CGS) 

 

 

 

 Simple equation: easy for system engineers to scale up 

 Good theoretical properties 

 Rao-Blackwell theorem guarantees CGS sampler has lower variance (better 

stability) than naïve Gibbs sampling 

 Empirically robust 

 Errors in δ, B do not affect final stationary distribution by much 

 Updates are sparse: fewer parameters to send over network 

 Model parameters δ, B are sparse: less memory used 

 If it were dense, even 1M word * 10K topic ≈ 40GB already! 
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CGS Example: 

Topic Model sampler 

docs i 

(~ 1B) 

topics k words v (~ 1M) 
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Data Parallelization for 

CGS Topic Model Sampler 

doc 

partition 

words v (~ 1M) 

doc 

partition 

doc 

partition 

model 

replica 

model 

replica 

model 

replica 
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Data-Parallel Strategy: 

Approx. Distributed LDA 
[Newman et al., 2009] 

 Step 1: broadcast central model 
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Data-Parallel Strategy: 

Approx. Distributed LDA 
[Newman et al., 2009] 

 Step 1: broadcast central model 
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Data-Parallel Strategy: 

Approx. Distributed LDA 
[Newman et al., 2009] 

 Step 2: Perform Gibbs sampling in parallel 
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Data-Parallel Strategy: 

Approx. Distributed LDA 
[Newman et al., 2009] 

 Step 3: commit changes back to the central model 
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Data-Parallel Strategy: 

Approx. Distributed LDA 
[Newman et al., 2009] 

 Approximate 

 Convergence not guaranteed – Markov Chain ergodicity broken 

 Results generally “good enough” for industrial use 

 

 Bulk synchronous parallel 

 CPU cycles are wasted while synchronizing the model 

 Asynchronous and bounded-asynchronous extensions possible [Smola et al., 

2010; Ahmed et al., 2012, Dai et al., 2015] 

 

 How to overlap communication and computation for better 

efficiency? 
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Error in data-parallel LDA 

 Consider the CGS equation: 

 

 

 

 Data-parallelism incurs error in B (the pink box) and the 

summation term (the gray box) 

 Both quantities are duplicated onto workers; their values become stale as 

sampling proceeds 

 True even for bulk synchronous parallel execution! 

 Asynchrony helps somewhat 

 Communicate very frequently to reduce staleness 

 Is there a better solution? 
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Model-Parallel Strategy 1: 

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

 Think graphically: token = edge 

docs 
words 
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Model-Parallel Strategy 1: 

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

 Model-parallel via graph structure 

doc word 
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Model-Parallel Strategy 1: 

GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

 Asynchronous communication 

 Overlaps computation and communication – iterations are faster 

 

 Model-parallelism means each machine only stores a subset 

of statistics 

 Less memory usage if implemented well 

 

 Drawback: need to convert problem into a graph 

 Vertex-cut duplicates lots of vertices, canceling out savings 

 Are there other ways to partition the problem? 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 Topic model matrix structure: 

 

 

 

 

 Idea: non-overlapping matrix partition: 

 

Source: [Gemulla et al., 2011] 

topic 

doc 

(~ 1B) 

topic word (~ 1M) 

topic 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 Non-overlapping partition of the word count matrix 

 Fix data at machines, send model to machines as needed 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 During preprocessing: determine set of words used in each 

data block 

 Begin training: load each data block from disk 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 Pull the set of words from Key-Value store 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 Sample, write result to disk, send changes back to KV-store 
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Model-Parallel Strategy 2: 

LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

 Model-parallel advantage: disjoint words/docs on each 

machine 

 Gibbs sampling almost equivalent to sequential case 

 More accurate than data-parallel LDA 

 Fast, asynchronous execution possible 

 

 Compared to GraphLab LDA: 

 Simple partitioning strategy – less system overheads, easier to implement 

 Need to be careful about load imbalance (some docs will touch a particular word 

more times than others) 

 Solution: pre-group documents by word frequency 
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Error in model-parallel LDA 

 Recall the CGS equation: 

 

 

 

 Model-parallelism only has error in summation term (gray box) 

 Summation term is very large for Big Data (billions of docs) => error negligible 

 Compared to data-parallelism: error due to B (pink box) eliminated 
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Distributed ML Algorithms 

Summary 

 Many parallel algorithms for both Optimization and MCMC 

 They share common parallelization themes 

 Embarrassingly parallel: combine results from multiple independent problems, 

e.g. PSGD, EP-MCMC 

 Stochastic over data: approximate functions/ gradients with expectation over 

subset of data, then parallelize over data subsets, e.g. SGD 

 Model-parallel: parallelize over model variables, e.g. Coordinate Descent 

 Auxiliary variables: decompose problem by decoupling dependent variables, 

e.g. ADMM, Auxiliary Variable MCMC 

 Considerations 

 Regularizers, model structure: may need sequential proximal or projection 

step, e.g. Stochastic Proximal Gradient 

 Data partitioning: for data-parallel, how to split data over machines? 

 Model partitioning: for model-parallel, how to split model over machines? Need 

to be careful as model variables are not necessarily independent of each other. 
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Implementing 

Distributed ML Algorithms 

 Implementing high-performance distributed ML is not easy 

 If not careful, can end up slower than single machine! 

 System bottlenecks (load imbalance, network bandwidth & latency) are not trivial 

to engineer around 

 

 Even if algorithm is theoretically sound and has attractive 

properties, still need to pay attention to system aspects 

 Bandwidth (communication volume limits) 

 Latency (communication timing limits) 

 Data and Model partitioning (machine memory limitation, also affects comms 

volume) 

 Data and Model scheduling (affects convergence rate, comms volume & timing) 

 Non-ideal systems behavior: uneven machine performance, other cluster users 

KDD 15 © Eric Xing @ CMU, 2015 107 



Implementing 

Distributed ML Algorithms 

 A number of ad-hoc or partial solutions, but sometimes 

lacking theoretical analysis 

 Major barrier: hard to analyze solutions because algorithm/systems sometimes 

not fully/transparently described in papers 

 Possible solution: a universal language and principles for design could facilitate 

theoretical analysis of existing and new solutions 

 

 Let us look at some open-source platforms, which distributed 

ML algorithms can be implemented upon 
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School of Computer Science 

Open-Source Platforms 

for Distributed ML 
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Modern Systems for Big ML 

● Just now: data-, model-parallel ML algorithms for optimization, 

MCMC 

 

● One could write distributed implementations from scratch 

 

● Perhaps better to use an existing open source platform? 
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Spark Overview [Zaharia et al., 2010] 

● General-purpose system for Big Data processing 
o Shell/interpreter for Matlab/R-like analytics 

 

● MLlib = Spark’s ready-to-run ML library 
o Implemented on Spark’s API 
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Spark Overview [Zaharia et al., 2010] 

 MLlib algorithms (v1.4) 
 Classification and regression 

 linear models (SVMs, logistic regression, linear regression) 

 naive Bayes 

 decision trees 

 ensembles of trees (Random Forests and Gradient-Boosted Trees) 

 isotonic regression 

 Collaborative filtering 

 alternating least squares (ALS) 

 Clustering 

 k-means 

 Gaussian mixture 

 power iteration clustering (PIC) 

 latent Dirichlet allocation (LDA) 

 streaming k-means 

 Dimensionality reduction 

 singular value decomposition (SVD) 

 principal component analysis (PCA)  
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Spark Overview [Zaharia et al., 2010] 

● Key feature: Resilient Distributed Datasets (RDDs) 

● Data processing = lineage graph of transforms 

● RDDs = nodes 

● Transforms = edges 
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Spark Overview [Zaharia et al., 2010] 

 RDD-based programming model 

 Similar in spirit to Hadoop Mapreduce 

 Functional style: manipulate RDDs via “transformations”, “actions” 

 E.g. map is a transformation, reduce is an action 

 Example: load file, count total number of characters 

 

 

 

 Other transformations and actions: 

 union(), intersection(), distinct() 

 count(), first(), take(), foreach() 

 … 

 Can specify if an RDD should be “persisted” to disk 

 Allows for faster recovery during cluster faults 
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val lineLengths = lines.map(s => s.length) 
val totalLength = lineLengths.reduce((a, b) => a + b) 



Spark Overview [Zaharia et al., 2010] 

● Benefits of Spark: 

● Fault tolerant - RDDs immutable, just re-compute from lineage 

● Cacheable - keep some RDDs in RAM 

o Faster than Hadoop MR at iterative algorithms 

● Supports MapReduce as special case 
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Spark:  

Faster MapR on Data-Parallel 

● Spark’s solution: Resilient Distributed Datasets (RDDs) 
o Input data → load as RDD → apply transforms → output result 

o RDD transforms strict superset of MapR 

o RDDs cached in memory, avoid disk I/O 

 

 

 

 

 

 

 

 

 
 

● Spark ML library supports data-parallel ML algos, like Hadoop 
o Spark and Hadoop: comparable first iter timings… 

o But Spark’s later iters are much faster 
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GraphLab Overview [Low et al., 2012] 

 Known as “GraphLab PowerGraph v2.2” 

 Different from commercial software “GraphLab Create” by Dato.com, who 

formerly developed PowerGraph v2.2 

 System for Graph Programming 

 Think of ML algos as graph algos 

 Comes with ready-to-run “toolkits” 

 ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical 

models 
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GraphLab Overview [Low et al., 2012] 

 ML-related toolkits 

 Clustering 

 K-means 

 Spectral 

 Collaborative Filtering 

 Matrix Factorization (including Non-negative, L1/L2-regularized) 

 Graphical Models 

 Factor graphs 

 Belief propagation algorithm 

 Topic Modeling 

 LDA 

 

 Other toolkits available for computer vision, graph analytics, 

linear systems 
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● Key feature: Gather-Apply-Scatter Programming Model 

o Write ML algos as vertex programs 

o Run vertex programs in parallel on each graph node 

o Graph nodes, edges can have data, parameters 

KDD 15 © Eric Xing @ CMU, 2015 119 

Source: Gonzalez (2012) 

GraphLab Overview [Low et al., 2012] 



● Programming Model: GAS Vertex Programs 

o 1) Gather(): Accumulate data, params from my neighbors + edges 

o 2) Apply(): Transform output of Gather(), write to myself 

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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● Programming Model: GAS Vertex Programs 

o 1) Gather(): Accumulate data, params from my neighbors + edges 

o 2) Apply(): Transform output of Gather(), write to myself 

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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● Programming Model: GAS Vertex Programs 

o 1) Gather(): Accumulate data, params from my neighbors + edges 

o 2) Apply(): Transform output of Gather(), write to myself 

o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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GraphLab Overview [Low et al., 2012] 

 Example GAS program: Pagerank 

 Programmer implements gather(), apply(), scatter() functions 
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● Benefits of Graphlab 

o Supports asynchronous execution - fast, avoids straggler problems 

o Edge-cut partitioning - scales to large, power-law graphs 

o Graph-correctness - for ML, more fine-grained than MapR-correctness 

Source: Gonzalez (2012) 
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● GraphLab Graph consistency models 

o Guide search for “ideal” model-parallel execution order 

o ML algo correct if input graph has all dependencies 

 

 

 

 

 

 

 

 

● GraphLab supports asynchronous (no-waiting) execution 

o Correctness enforced by graph consistency model 

o Result: GraphLab graph-parallel ML much faster than Hadoop 

 
Source: Low et al. (2010) 
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Model-Parallel via Graphs  



A New Framework for Large Scale Parallel 
Machine Learning 

(Petuum.org) 
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Petuum Overview [Xing et al., 2015] 

 Key modules 

 Key-value store (Parameter Server) for data-parallel ML algos 

 Scheduler for model-parallel ML algos 

 Program ML algos in iterative-convergent style 

 ML algo = (1) write update equations + (2) iterate eqns via schedule 
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Petuum Overview [Xing et al., 2015] 

 ML Library (Petuum v1.1): 
 Topic Modeling 

 LDA 

 MedLDA (supervised topic models) 

 Deep Learning 

 Fully-connected DNN 

 Convolutional Neural Network 

 Matrix Factorization 

 Least-squares Collaborative Filtering (with regularization) 

 Non-negative Matrix Factorization 

 Sparse Coding 

 Regression 

 Lasso Regression 

 Metric Learning 

 Distance Metric Learning 

 Clustering 

 K-means 

 Classification 

 Random Forest 

 Logistic Regression and SVM 

 Multi-class Logistic Regression 
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Petuum Overview [Xing et al., 2015] 

 Key-Value store (Parameter Server) 

 Enables data-parallelism 

 A type of Distributed Shared Memory (DSM) 

 Model parameters globally shared across workers 

 Programming: replace local variables with PS calls 

 

KDD 15 © Eric Xing @ CMU, 2015 129 

KV-

store 

(one or more 

machines) 

Worker 1 Worker 2 

Worker 3 Worker 4 

ProcessDataPoint(i) { 
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  } 
} 
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Machine 

ProcessDataPoint(i) { 
  for j = 1 to M { 
    old = PS.read(model,j) 
    delta = f(model,data(i)) 
    PS.inc(model,j,delta) 
  } 
} 

Distributed 
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Petuum Overview [Xing et al., 2015] 

 Key-Value store features: 

 ML-tailored consistency model: Stale Synchronous Parallel (SSP) 

 Asynchronous-like speed 

 Bulk Synchronous Parallel-like correctness guarantees for ML 
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Petuum Overview [Xing et al., 2015] 

 Scheduler 

 Enables correct model-parallelism 

 Can analyze ML model structure for best execution order 

 Programming: schedule(), push(), pull() abstraction 
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Petuum Overview [Xing et al., 2015] 

 Scheduler benefits: 

 ML scheduling engine: Structure-Aware Parallelization (SAP) 

 Scheduled ML algos require less computation to finish 
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Petuum: 

ML props = 1st-class citizen 

 Error tolerance via Stale Sync Parallel KV-store 

 System Insight 1: ML algos bottleneck on network comms 

 System Insight 2: More caching => less comms => faster execution 
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Petuum: 

ML props = 1st-class citizen 

 Harness Block dependency structure via Scheduler 

 System Insight 1: Pipeline scheduler to hide latency 

 System Insight 2: Load-balance blocks to prevent stragglers 
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Petuum: 

ML props = 1st-class citizen 

 Exploit Uneven Convergence via Prioritizer 

 System Insight 1: Prioritize small # of vars => fewer deps to check 

 System Insight 2: Lowers computational cost of Scheduling 
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Petuum Architecture and 

Hadoop Ecosystem Integration 
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HDFS (distributed storage) 
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ML application library 

Hadoop Ecosystem 
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ML Programming Interface: 

Needs and Considerations 

 An ideal ML programming interface should make it easy to 

write correct data-parallel, model-parallel ML programs 

 

 What can be abstracted away? 

 Abstract away inter-worker communication/synchronization: 

 Automatic consistency models; bandwidth management through distributed shared 

memory 

 Abstract scheduling away from update equations: 

 Easy to change scheduling strategy, or use dynamic schedules 

 Abstract away worker management: 

 Let ML system decide optimal number and configuration of workers 

 Ideally, reduce programmer burden to just 3 things: 

 Declare model, write updates, write schedule 
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School of Computer Science 

Systems, Architectures 

for Distributed ML 
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There Is No Ideal Distributed System! 

 Not quite that easy… 

 Two distributed challenges: 

 Networks are slow 

 “Identical” machines rarely perform equally 

Low bandwidth, 

High delay 

Unequal 

performance 
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Issue: How to approach 

distributed systems? 

 Idealist view 

 Start with simplified view of distributed 

systems; develop elaborate theory 

 

 Issues being explored: 

 Information theoretic lower bounds for 

communication [Zhang et al. 2013] 

 Provably correct distributed 

architectures, with mild assumptions 

[Langford et al. 2009, Duchi and 

Agarwal 2011] 

 

 How can we build practical solutions 

using these ideas? 

 Pragmatist view 

 Start with real-world, complex 

distributed systems, and develop a 

combination of theoretical guarantees 

and empirical evidence 

 

 Issues being explored: 

 Fault tolerance and recovery [Zaharia 

et al. 2012, Spark, Li et al. 2014] 

 Impact of stragglers and delays on 

inference, and robust solutions [Ho et 

al. 2013, Dai et al. 2015, Petuum, Li et 

al. 2014] 

 Scheduling of inference computations 

for massive speedups [Low et al. 2012, 

GraphLab, Kim et al. 2014, Petuum] 

 How can we connect these 

phenomena to theoretical inference 

correctness and speed? 
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Why need new Big ML systems? 

MLer’s view 

 Focus on  

 Correctness 

 fewer iteration to converge,  

 but assuming an ideal system, e.g.,  

 zero-cost sync,  

 uniform local progress 
 

 

 

 
 for (t = 1 to T) { 

  doThings() 

  parallelUpdate(x,θ) 
  doOtherThings() 
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Why need new Big ML systems? 

Systems View: 

 Focus on  

 high iteration throughput (more iter per sec) 

 strong fault-tolerant atomic operations,  

 but assume ML algo is a black box  

 ML algos “still work” under different execution 

models 

 “easy to rewrite” in chosen abstraction 
 

Non-uniform 

convergence  

Dynamic 

structures 

Error  

tolerance  

Agonistic of ML properties and objectives in system 

design 
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Synchronization model 

Programming model 

Shotgun with 2 machines 

Single machine (shooting algorithm) 

Shotgun with 4 machines flies away! 
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Why need new Big ML systems? 

MLer’s view 

 Focus on  

 Correctness 

 fewer iteration to converge,  

 but assuming an ideal system, e.g.,  

 zero-cost sync,  

 uniform local progress 

 

 

 
 

 

     Oversimplify systems issues 

 need machines to perform 

consistently 

 need lots of synchronization 

 or even try not to communicate at all 

Systems View: 

 Focus on  

 high iteration throughput (more iter per sec) 

 strong fault-tolerant atomic operations,  

 but assume ML algo is a black box  

 ML algos “still work” under different execution 

models 

 “easy to rewrite” in chosen abstraction 

 
 

 

 

   Oversimplify ML issues and/or 

ignore ML opportunities 

 ML algos “just work” without proof 

 Conversion of ML algos across 

different program models (graph 

programs, RDD) is easy 

for (t = 1 to T) { 
  doThings() 

  parallelUpdate(x,θ) 
  doOtherThings() 
} 
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• Nonparametric 

Bayesian Models 
• Graphical 

Models 
• Sparse Structured 

I/O Regression 
• Sparse Coding 

• Spectral/Matrix 

Methods 

• Regularized 

Bayesian Methods • Deep Learning • Large-Margin 

Machine Learning 
Models/Algorithms 

• Network switches 

• Infiniband 

• Network attached storage 

• Flash storage 

• Server machines 

• Desktops/Laptops 

• NUMA machines 

• GPUs • Cloud compute 

(e.g. Amazon EC2) 

• Virtual Machines 

Hardware and infrastructure 

  

 

 

Solution: 
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• Nonparametric 

Bayesian Models 
• Graphical 

Models 
• Sparse Structured 

I/O Regression 
• Sparse Coding 

• Spectral/Matrix 

Methods 

• Regularized 

Bayesian Methods • Deep Learning • Large-Margin 

Machine Learning 
Models/Algorithms 

• Network switches 

• Infiniband 

• Network attached storage 

• Flash storage 

• Server machines 

• Desktops/Laptops 

• NUMA machines 

• GPUs • Cloud compute 

(e.g. Amazon EC2) 

• Virtual Machines 

Hardware and infrastructure 

  

 

 

Solution:  

An Alg/Sys INTERFACE for Big ML 
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The Big-ML “Stack” - More 
than just software 

Theory: Degree of parallelism, convergence analysis, sub-
sample complexity …  

System: Distributed architecture: DFS, KV-store, task 
scheduler… 

Model:    Generic building blocks: loss functions,  structures, 
constraints, priors … 

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, 
Spectrum … 

Representation:  Compact and informative features 

Programming model & Interface: 
High: Matlab/R 
Medium: C/JAVA 
Low: MPI 

Hardware: GPU, flash storage, cloud … 
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Markov Chain Monte Carlo Optimization 

ML algorithms are 

Iterative-Convergent 
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Read 
Read + 

Write 

Data 

Model Parameters 

at iteration (t-1) 

Iterative Algorithm 

Intermediate Updates 

Aggregate + 

Transform 

Updates 

A General Picture of ML 

Iterative-Convergent Algorithms 
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Issues with Hadoop and 

I-C ML Algorithms? 

Naïve MapReduce not best for ML 
 

● Hadoop can execute iterative-convergent, data-parallel ML... 

o map() to distribute data samples i, compute update Δ(Di) 

o reduce() to combine updates Δ(Di) 

o Iterative ML algo = repeat map()+reduce() again and again 

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations! 

HDFS Bottleneck 

Image source: dzone.com 

Iteration 1 Iteration 2 
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for (t = 1 to T) { 
  doThings() 
  parallelUpdate(x,θ) 
  doOtherThings() 
} 

θ 

θ θ 

θ 

θ 

θ θ θ 

θ θ 

θ θ θ 

Good Parallelization Strategy 

is important 

ML on 

epoch 1 

ML on 

epoch 2 

ML on 

epoch 3 

ML on 

epoch m 

Barrier ? 

Write 

outcome to  

KV store 

Write 
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KV store 

Write 
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KV store 

Write 
outcome to  

KV store 

Collect 
outcomes 
and aggregate  
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Data Parallelism 

Additive Updates 

KDD 15 © Eric Xing @ CMU, 2015 151 



Model 

(Topics) 

Data (Docs) Update (MCMC 

algo) 

BIG DATA (billions of docs) 

Example Data Parallel: 

Topic Models 
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Example Data Parallel: 

Topic Models 
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MCMC algo MCMC algo MCMC algo MCMC algo MCMC algo 

Global shared model 
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Concatenating updates 

Model Parallelism 
Scheduling 

Function 

Read + 

Write 

model parameters not 

updated in this 

iteration 
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Model (Parameter 

Vector) 
Data (Feature + Response 

Matrices) 

Update (CD algo) 

BIG MODEL (100 billions of params) 

Example Model Parallel: 

Lasso Regression 
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Example Model Parallel: 

Lasso Regression 
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A Dichotomy of Data and Model 

in ML Programs 

Data Parallelism Model Parallelism 
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Data+Model Parallel: 

Solving Big Data+Model 

Model (edge weights) 

Data (images) 
Update 

(backpropagation) 

Data & Model both big! 

Millions of images, 

Billions of weights 

What to do? 
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Data+Model Parallel: 

Solving Big Data+Model 

KDD 15 © Eric Xing @ CMU, 2015 

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo 

Parameter Synchronization Channel 

Tackle Deep Learning scalability 

challenges by combining 

data+model parallelism 
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How difficult is 

data/model-parallelism? 

 

 Certain mathematical conditions must be met 

 

 Data-parallelism generally OK when data IID (independent, 

identically distributed) 

 Very close to serial execution, in most cases 

 

 Naive Model-parallelism doesn’t work 

 NOT equivalent to serial execution of ML algo 

 Need carefully designed schedule 
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Intrinsic Properties of ML Programs 

 ML is optimization-centric, and admits an iterative convergent 

algorithmic solution rather than a one-step closed form solution 
 

 Error tolerance: often robust against limited 

 errors in intermediate calculations 
 

 Dynamic structural dependency: changing correlations  

 between model parameters critical to efficient parallelization  
 

 

 Non-uniform convergence: parameters 

 can converge in very different number of steps 

 

 Whereas traditional programs are transaction-centric, thus only 

guaranteed by atomic correctness at every step  
 

 Most existing platforms (e.g., Spark, GraphLab) have not yet systematically 

explore and exploit above properties 
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Challenges in Data Parallelism 

 Existing ways are either safe/slow (BSP), or fast/risky (Async) 
 

 Challenge 1: Need “Partial” synchronicity 

 Spread network comms evenly (don’t sync unless needed) 

 Threads usually shouldn’t wait – but mustn’t drift too far apart! 
 

 Challenge 2: Need straggler tolerance 

 Slow threads must somehow catch up 
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??? 

BSP Async 

Is persistent memory really necessary for ML? 
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Is there a middle ground for data-

parallel consistency? 

 Challenge 1: “Partial” synchronicity 

 Spread network comms evenly (don’t sync unless needed) 

 Threads usually shouldn’t wait – but mustn’t drift too far apart! 
 

 Challenge 2: Straggler tolerance 

 Slow threads must somehow catch up 
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High-Performance Consistency Models 

for Fast Data-Parallelism [Ho et al., 2013] 

 

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model 
 

• Allow threads to run at their own pace, without synchronization 

• Fastest/slowest threads not allowed to drift >S iterations apart 

• Threads cache local (stale) versions of the parameters, to reduce network syncing 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 will always see 

these updates 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 

Thread 2 may not see 

these updates (possible error) 

Consequence: 
 

• Asynchronous-like speed, BSP-like ML correctness guarantees 

• Guaranteed age bound (staleness) on reads 

• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 
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Improving Bounded-Async via 

Eager Updates [Dai et al., 2015] 

 Eager SSP (ESSP) protocol 

 Use spare bandwidth to push 

fresh parameters sooner 

 

 Figure: difference in stale 

reads between SSP and ESSP 

 ESSP has fewer stale reads; 

lower staleness variance 

 Faster, more stable 

convergence (theorems later) 
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Enjoys Async Speed, yet BSP 

Guarantee, across algorithms  

 Scale up Data Parallelism without being limited by long BSP 

synchronization time 

 

 Effective across different algorithms, e.g. LDA, Lasso, Matrix 

Factorization: 
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LASSO Matrix Fact. LDA 
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Challenges in Model Parallelism 

 Recall Lasso regression: 
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A huge number of parameters  

(e.g.) J = 100M 

N 

J 

J 

Model 

= 
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 Concurrent updates of     may induce errors 

Sync 

Sequential updates Concurrent updates 

Induces parallelization error 

Need to check x1
Tx2 

before updating 

parameters 

Challenge 1: 

Model Dependencies 
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Challenge 2: Uneven 

Convergence Rate on Parameters 

 

 

 

 

 

 

 

 

• Convergence time determined by slowest parameters 

• How to make slowest parameters converge more 

quickly? 
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Remaining time to convergence Remaining time to convergence 
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Is there a middle ground for 

model-parallel consistency? 

 Existing ways are either safe but slow, or fast but risky 

 Challenge 1: need approximate but fast model partition 

 Full representation of data/model, and explicitly compute all 

dependencies via graph cut is not feasible  

 Challenge 2: need dynamic load balancing  

 Capture and explore transient model dependencies  

 Explore uneven parameter convergence 
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??? 

Graph Partition Random Partition 

Is full consistency really 

necessary for ML? 
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 Structure-Aware Parallelization 

(SAP) [Lee et al., 2014; Kumar et al., 2014] 
scheduler

key-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

scheduler
key-value 

store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

Careful model-parallel execution: 
 Structure-aware scheduling 

 Variable prioritization 

 Load-balancing 

scheduler
key-value 

store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

 Simple programming: 
 Schedule() 

 Push() 

 Pull() 
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Schedule 1: Priority-based [Lee et al., 2014] 

 Choose params to update based on convergence progress 

 Example: sample params with probability proportional to their recent change 

 Approximately maximizes the convergence progress per round 
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Priority-based scheduling Shotgun [Bradley et al. 2011] 

Uniform 

distribution 
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Schedule 2: Block-based 

(with load balancing) [Kumar et al., 2014] 
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Partition data & model into d × d blocks 

Run different-colored blocks in parallel 

 

Blocks with less data/para or experience less 

straggling run more iterations 

Automatic load-balancing + better convergence 
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Structure-aware Dynamic Scheduler 

(STRADS) [Lee et al., 2014, Kumar et al., 2014] 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Round 1 Round 2 Round 3 Round 4 

Blocks of variables 

Sync. 

barrier 

Sample Variables  

to be Updated ~ p(j)  

Check 

Variable 

Dependency 

All Variables  

Generate 

Blocks of 

Variables 

STRADS 

• Priority Scheduling 

 

 

 

 

 

• Block scheduling   

[Kumar, Beutel, Ho and Xing, Fugue: 

Slow-worker agnostic distributed 

learning, AISTATS 2014] 
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Avoids dependent parallel updates, 

attains near-ideal convergence speed 

 

 STRADS+SAP achieves better speed and objective 
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Efficient for large models 

 

 Model is partitioned => can run larger models on same 

hardware 

KDD 15 © Eric Xing @ CMU, 2015 

Lasso MF LDA 
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School of Computer Science 

Theory of Real 

Distributed ML Systems 
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Why study parallel ML theory? 

 What sequential guarantees still hold in parallel setting? 

 Under what conditions? 

 Growing body of literature for “ideal” parallel systems 

 Serializable– equivalent to single-machine execution in some sense 

 Focused on per-iteration analysis 

 Abstract away computational/comms cost 

 Predicting real-world running time requires these costs to be put back 

 “Real-world” parallel systems a work in progress 

 Asynchronous or bounded-async approaches can empirically work better than 

synchronous approaches 

 Need additional theoretical analysis to understand why 

 Async => no serializability… why does it still work? 

 Parallelization requires data and/or model partitioning… many strategies exist 

 Want partitioning strategies that are provably correct 

 Need to determine when/where independence is violated, and what impact such violation 

has on algorithm correctness 
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Challenges in real-world 

distributed systems 

 Real-world systems need asynchronous execution and load 

balancing 

 Synchronous system: load imbalances => slow workers => waiting at barriers 

 Need load balancing to reduce load at slow workers 

 Need asynchronous execution so faster workers can proceed without waiting 

 

 Solution 1: key-value stores 

 Automatically manages communication with bounded asynchronous guarantees 

 

 Solution 2: scheduling systems 

 Automatically balances workload across workers; also performs prioritization and 

dependency checking 
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Communication strategies 

 Data parallel 

 Partition data across workers 

 Or fetch small batches of data in an online/streaming fashion 

 Communicate model as needed to workers 

 e.g. key-value store with bounded asynchronous model – theoretical consequences? 

 Model parallel 

 Partition model across workers 

 Model partitions can change dynamically during execution – theoretical consequences? 

 Send data to workers as needed (e.g. from shared database) 

 Or place full copy of data on each worker (since data is immutable) 

 Data + Model parallel? 

 Partition both data and model across workers 

 Wide space of strategies; need to reduce model and data communication 

 Reduce model communication by exploiting independence between variables 

 Reduce data and model communication via broadcast strategies, e.g. Halton sequence 
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Bridging Models 

for Parallel Programming 

 Bulk Synchronous Parallel [Valiant, 1990] is a bridging model 

 Bridging model specifies how/when parallel workers should compute, and 

how/when workers should communicate 

 Key concept: barriers 

 No communication before barrier, only computation 

 No computation inside barrier, only communication 

 Computation is “serializable” – many sequential theoretical guarantees can be 

applied with no modification 

 Bounded Asynchronous Parallel (BAP) bridging model 

 Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015] 

 Workers re-use old version of parameters, up to s iterations old – no need to barrier 

 Workers wait if parameter version older than s iterations 
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Types of Convegence 

Guarantees 

 Regret/Expectation bounds on parameters 

 Better bounds => better convergence progress per iteration 

 Probabilistic bounds on parameters 

 Similar meaning to regret/expectation bounds, usually stronger in guarantee 

 Variance bounds on parameters 

 Lower variance => higher stability near optimum => easier to determine 

convergence 

 For data parallel? 

 For Model parallel? 

 For Data + model parallel? 
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BAP Data Parallel: 

Can we do value-bounding? 

 Idea: limit model parameter 

difference Δθi-j = ||θi – θj|| between 

machines i,j to < a threshold 

 

 Does not work in practice! 

 To guarantee that Δθi-j has not 

exceeded the threshold, machines must 

wait to communicate with each other 

 No improvement over synchronous 

execution! 

 

 Rather than controlling parameter 

difference via magnitude, what 

about via iteration count? 

 This is the (E)SSP communication 

model… 
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BAP Data Parallel: 

(E)SSP model [Ho et al., 2013; Dai et al., 2015] 
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Stale Synchronous Parallel (SSP) 
 

• Allow threads to run at their own pace, without synchronization 

• Fastest/slowest threads not allowed to drift >S iterations apart 

• Threads cache local (stale) versions of the parameters, to reduce network syncing 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 will always see 

these updates 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 

Thread 2 may not see 

these updates (possible error) 

Consequence: 
 

• Asynchronous-like speed, BSP-like ML correctness guarantees 

• Guaranteed age bound (staleness) on reads 

• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 
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BAP Data Parallel: 

(E)SSP Regret Bound [Ho et al., 2013] 

 Goal: minimize convex                                   

(Example: Stochastic Gradient) 

 L-Lipschitz, problem diameter bounded by F2 

 Staleness s, using P threads across all machines 

 Use step size 

 (E)SSP converges according to 

 Where T is the number of iterations 
 

 

 

 

 

 Note the RHS interrelation between (L, F) and (s, P) 

 An interaction between model and systems parameters 

 Stronger guarantees on means and variances can also be proven 

 

Difference between 

SSP estimate and true optimum 
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Intuition: 

Why does (E)SSP converge? 

 

 

 

 

 

 

 

 

 

 

 Number of missing updates bounded 

 Partial, but bounded, loss of serializability 

 Hence numeric error in parameter also bounded 

 Later in this tutorial – formal theorem 
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SSP versus ESSP: 

What is the difference? 

 ESSP is a systems improvement over SSP communication 

 Same maximum staleness guarantee as SSP 

 Whereas SSP waits until the last second to communicate… 

 … ESSP communicates updates as early as possible 

 

 What impact does ESSP have on convergence speed and 

stability? 
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Theorem: Given L-Lipschitz objective ft and stepsize ht, 

 

 

 

BAP Data Parallel: 

(E)SSP Probability Bound 
[Dai et al., 2015] 

Let real staleness observed by system be 
Let its mean, variance be                     ,  

Explanation: the (E)SSP distance between true optima and current 
estimate decreases exponentially with more iterations. Lower staleness 
mean, variance      ,      improve the convergence rate. 
 
Take-away: controlling staleness mean      , variance        (on top of max 
staleness s) is needed for faster ML convergence, which ESSP does. 
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BAP Data Parallel: 

(E)SSP Variance Bound 
[Dai et al., 2015] 

 Theorem: the variance in the (E)SSP estimate is 
 
 
 
 where 
 
 and         represents 5th order or higher terms in 
 

Explanation: The variance in the (E)SSP parameter estimate monotonically 
decreases when close to an optimum. 
Lower (E)SSP staleness        => Lower variance in parameter => Less 
oscillation in parameter => More confidence in estimate quality and 
stopping criterion. 
Take-away: Lower average staleness (via ESSP) not only improves 
convergence speed, but also yields better parameter estimates 
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ESSP vs SSP: Increased stability 

helps empirical performance 

 Low-staleness SSP and ESSP converge equally well 

 But at higher staleness, ESSP is more stable than SSP 

 ESSP communicates updates early, whereas SSP waits until the last second 

 ESSP better suited to real-world clusters, with straggler and multi-user issues 
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Scheduled Model Parallel: 

Dynamic/Block Scheduling 
[Lee et al. 2014, Kumar et al. 2014] 
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 Goal: solve sparse regression problem 

 Via coordinate descent over “SAP blocks” X(1), X(2), …, X(B) 

 X(b) are the data columns (features) in block (b) 

 P parallel workers, M-dimensional data 

 ρ = Spectral Radius[BlockDiag[(X(1))TX(1), …, (X(t))TX(t)]]; this block-diagonal 

matrix quantifies the maximum level of correlation (and hence problem 

difficulty) within all the SAP blocks X(1), X(2), …, X(t) 

 SAP converges according to 

 Where t is # of iterations 

 

 

 

 

 Take-away: SAP minimizes ρ by searching for feature subsets X(1), 
X(2), …, X(B) without cross-correlation => as close to P-fold speedup as 

possible 

Scheduled Model Parallel: 
Dynamic Scheduling Expectation Bound 
[Lee et al. 2014] 

Gap between current 

parameter estimate and optimum 

SAP explicitly minimizes ρ, ensuring 

as close to 1/P convergence as possible 
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Scheduled Model Parallel: 
Dynamic Scheduling Expectation Bound is near-ideal 
[Xing et al. 2015] 

Let                be  an ideal model-parallel schedule 

Let           be the parameter trajectory due to ideal scheduling 

Let          be the parameter trajectory due to SAP scheduling 

 

 

 

 

 

Explanation: Under dynamic scheduling, algorithmic progress is 

nearly as good as ideal model-parallelism. 

Intuitively, this is because both ideal and SAP model-parallelism 

minimize the parameter dependencies between parallel workers.  

Theorem: After t iterations, we have 
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Scheduled Model Parallel: 
Dynamic Scheduling Empirical Performance 

 Dynamic Scheduling for Lasso regression (SMP-Lasso): 

almost-ideal convergence rate, much faster than random 

scheduling (Shotgun-Lasso) 
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Scheduled Data+Model Parallel: 
Block-based Scheduling (with load balancing) 
[Kumar et al. 2014] 
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Partition data & model into d × d blocks 

Run different-colored blocks in parallel 

 

Blocks with less data/para or experience less 

straggling run more iterations 

Automatic load-balancing + better convergence 
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Scheduled Data+Model Parallel: 
Block-based Scheduling Variance Bound 1 
[Kumar et al. 2014] 

 Variance between iterations Sn+1 and Sn is: 

 

 

 

 

 

 Explanation: 

 higher order terms (red) are negligible 

 => parameter variance decreases every iteration 

 Every iteration, the parameter estimates become more stable 
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Scheduled Data+Model Parallel: 
Block-based Scheduling Variance Bound 2 
[Kumar et al. 2014] 

 Intra-block variance: Within blocks, suppose we update the 

parameters     using      data points. Then, variance of     after 

those      updates is: 

 

 

 

 

 

 Explanation: 

 Higher order terms (red) are negligible 

 => doing more updates within each block decreases parameter variance, leading 

to more stable convergence 

 Load balancing by doing extra updates is effective 
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Scheduled Data+Model Parallel: 
Block-Scheduling Empirical Performance 

 Slow-worker Agnostic Block-Scheduling (Fugue) faster than: 

 Embarrassingly Parallel SGD (PSGD) 

 Non slow-worker Agnostic Block-Scheduling (Barriered Fugue) 

 Slow-worker Agnostic Block-Scheduling converges to a better 

optimum than asynchronous GraphLab 

 Reason: more stable convergence due to block-scheduling 

 

 Task: Imagenet Dictionary Learning 

 630k images, 1k features 
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BAP Model-Parallel Guarantees 

 Model-parallel under synchronous setting: 

 Dynamic scheduling 

 Slow-worker block-based scheduling 

 Synchronous slow-worker problem solved by: 

 Load balancing (for dynamic scheduling) 

 Allow additional iters while waiting for other workers (slow-worker scheduling) 

 

 Work in progress: theoretical guarantees for bounded-async 

model-parallel execution 

 Intuition: model-parallel sub-problems are nearly independent (thanks to 

scheduling) 

 Perhaps better per-iteration convergence than bounded-async data-parallel 

learning? 
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School of Computer Science 

Open Research 

Issues and Topics 
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The Landscape of Big ML 
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The Landscape of Big ML 

Trend over last 5 years: 

More cores, bigger models 
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The Landscape of Big ML 

Possible to learn bigger, more 

powerful models with only 

reasonable # of cores? 
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Issue: When is Big Data useful? 

 Negative examples 

 “Simple” regression and classification models, with fixed parameter size 

 Intuition: decrease estimator variance has diminishing returns with more data. 

Estimator eventually becomes “good enough”, and additional data/computation is 

unnecessary 

 Positive examples 

 Topic models (internet/tech industry) 

 DNNs (Google, Baidu, Microsoft, Facebook, etc.) 

 Collaborative filtering (internet/tech industry) 

 Personalized models 

 Industry practitioners sometimes increase model size with more data 

 Conjecture: how much data is useful really depends on model 

size/capacity 
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Issue: Are Big Models useful? 

 In theory 

 Possibly, but be careful not to 

over-extend 

 

 Beware “statistical strength” 

 “When you have large 

amounts of data, your appetite 

for hypotheses tends to get 

even larger. And if it’s growing 

faster than the statistical 

strength of the data, then many 

of your inferences are likely to 

be false. They are likely to be 

white noise.” –Michael Jordan 

 In practice 

 Some success stories - could 

there be theory justification? 

 

 Many topics in topic models 

 Capture long-tail effects of 

interest; improved real-world 

task performance 

 

 Many parameters in DNNs 

 Improved accuracy in vision 

and speech tasks 

 Publicly-visible success (e.g. 

Google Brain) 
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Issue: Inference Algorithms, or 

Inference Systems? 

 View: focus on inference algorithm 

 

 Scale up by refining the algorithm 

 Given fixed computation, finish 

inference faster 

 

 Some examples 

 Quasi-Newton algorithms for 

optimization 

 Fast Gibbs samplers for topic 

models [Yao et al. 2009, Li et al. 

2014, Yuan et al. 2015, Zheng et 

al, 2015] 

 Locality sensitive hashing for 

graphical models [Ahmed et al. 

2012] 

 View: focus on distributed systems 

for inference 

 

 Scale up by using more machines 

 Not trivial: real clusters are 

imperfect and unreliable; Hadoop 

not a fix-all 

 

 Some examples 

 Spark 

 GraphLab 

 Petuum 
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Issue: Theoretical Guarantees 

and Empirical Performance 

 View: establishing theoretical 

guarantees gives practitioners 

confidence 

 Motivated by empirical science, 

where guarantees are paramount 

 

 Example: Lasso sparsistency and 

consistency [Wainwright, 2009] 

 Theory predicts how many 

samples n needed for a Lasso 

problem with p dimensions and k 

non-zero elements 

 Simulation experiments show very 

close match with theory 

 Is there a way to analyze more 

complex models? 

 View: empirical, industrial 

evidence can provide strong 

driving force for experimental 

research 

 Motivated by industrial practice, 

particularly at internet companies 

 

 Example: AB testing in industry 

 Principled means of testing new 

algorithms, feature engineering; by 

experimenting on user base 

 Determine if new method makes a 

significant difference to click-

through rate, user adoption, etc. 
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Open research topics 

 Future of data-, model-parallelism, and other ML properties  

 New properties, principles still undiscovered 

 Potential to accelerate ML beyond naive strategies 

 

 Deep analysis of BigML systems still limited to few ML algos 

 Model of ML execution under error due to imperfect system? 

 

 How to express more ML algorithms in table form (Spark, 

Petuum), or graph form (GraphLab) 

 Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics? 

 What are the key elements of a generic ML programming interface? 
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Thank You! 
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