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Abstract resources requires not only load balancing, but
also proper partitioning of functionality among
Optimally  partitioning application and producers and consumers.  While software
filesystem functionality within a cluster of engineering techniquese.f, modularity and
clients and servers is a difficult problem due object orientation) have given us the ability to
to dynamic variations in application behavior, partition applications into a set of interacting
resource availability, and workload mixes. This functions, we do not yet have solid techniques
paper presentsABACUS, a run-time system for determining where in the cluster each
that monitors and dynamically changes function of these functions should run, and deployed
placement for applications that manipulate large systems continue to rely on complex manual
data sets. Several examples of data-intensivedecisions made by programmers and system
workloads are used to show the importance ofadministrators.
proper function placement and its dependence
on dynamic run-time characteristics, with  Optimal placement of functions in a cluster
performance differences frequently reachingis difficult because the right answer is usually
2-10X. We evaluate how well thaBacus ‘it depends.” Specifically, optimal function
prototype adapts to run-time system behavior,placement depends on a variety of cluster
including both long-term variation (e.g., filter characteristicsg.g, communication bandwidth
selectivity) and short-term variation (e.g., between nodes, relative processor speeds among
multi-phase applications and inter-application nodes) and workload characteristiesq, bytes
resource contention). Our experiments with moved among functions, instructions executed
ABAcUS indicate that it is possible to adapt in by each function). Some are basic hardware
all of these situations and that the adaptation characteristics that only change when something
converges most quickly in those cases where théails or is upgraded, and thus are relatively

performance impact is most significant. constant for a given system. Other characteristics
cannot be determined until application invocation
1 Introduction time, because they depend on input parameters.

Worst of all, many change at run-time due to

Effectively utilizing cluster resources remains 1 application changing phases or competition
a difficult problem for distributed applications, °€tWeen concurrent applications over shared
Because of the relatively high cost of remote feSources. —Hence, any “one system fits all
versus local communication, the performance Ofsplutlon will cause suboptimal, and in some cases
a large number of these applications is sensitivediSastrous, performance.
to the distribution of their functions across the

network. As a result, the effective use of cluster " this paper, we focus on an important

class of applications for which clusters are
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parallel computations across the source/sinkin application behavior, and dynamic competition
servers, exploiting the servers’ computationalfor resources by concurrent applications. Our
resources and reducing the required networkpreliminary results are quite promisingBACUS
bandwidth. Effective function partitioning for often improves application response time by
these data-intensive applications will become2-10X. In all of our experiments, BACUS
even more important as processing powerselects the best placement for each function,
becomes ubiquitous, reaching devices and‘correcting” placement when the function is
network-attached appliances. This abundance omitially started on the “wrong” node. Further,
processing cycles has recently led researcher&BAcCuUS often outperforms any static one-time
to augment storage servers with support forplacement in situations where dynamic changes
executing application-specific code. We refer cause the proper placement to vary during an
to all such servers, which may be Jini- application’s execution. BACUS is able to
enhanced storage appliances [25], much-evolveffectively adapt function placement based on
commodity active disks [1, 19, 24] or file servers only black box monitoring, removing from
allowing remote execution of applications, as programmers the burden of considering function
programmable storage server simplystorage  placement.
servers
The remainder of this paper is organized as

In addition to their importance, we observe follows. Section 2 discusses howBACUS
that these data-intensive applications haverelates to prior work. Section 3 describes
characteristics that simplify the tasks involved the design of BAcus. Section 4 discusses
with dynamic function placement. Specifically, the ABacus programming model and several
these applications all move and processexample applications built upon it. Section 5
significant amounts of data, enabling a describes the run-time system. Section 6 presents
monitoring system to quickly learn about a variety of experiments to demonstrate the value
the most important inter-object communication of dynamic function placement andeAcCuUS's
patterns and per-object resource requirementsability to effectively adapt to dynamic conditions.
This information allows the run-time system Section 7 summarizes the paper’s contributions.
to rapidly identify functions that should be
moved to reduce communication overheads or2 Related work
resource contention. In our prototype system,

called IABgCUS' functions assomzteg ‘l’(‘"th There exists a large base of excellent research
particular data streams are moved bac and, practical experiences related to code mobility
forth betvyeen clllcj:-nts and Servers in response,q ciuster computing—far too large to fully

to dynamic conditions. In our implementation, o, merate here. This section discusses the

programmers explicitly partition the functions , relevant previous work on adaptive function
associated with data streams into d'St'nCthacement and how it relates tBACUS.

components, conforming to an intuitive object-

k?ased programming model. TheBACUS run- i Several previous systems such as Coign and
time system monitors the resource consuMption, e g 116, 22] have demonstrated that function
and communication of these cOmMPONeNts, i ement decisions can be automated given
without knowing anything about their intemals 5 .0\rate profiles of inter-object communication
(black box monitoring). The measurements aregng per-object resource consumption. Al
used with a cost-benefit model to decide whento ¢ a0 systems use long-term histories to

relocate components to more optimal locations. make good installation-time or invocation-

hi . h . time function placement decisions. BACUS
In this paper, we describe the design andgqmhements these previous systems by looking

|mplementat|on of _/BAC_US a.n.d a set of at how to dynamically adapt placement decisions
experiments evaluating its ability to adapt to to run-time conditions

changing conditions. Specifically, we explore
how well ABacus adapts to variations in

network topology, application cache access o consumer rates to match production rates,

pattem’. applicatiqn data reduction  (filter and per-producer rates to meet consumption
selectivity), contention over shared data, phase?ate variations.  Such adjustments allow it

River [4] is a system that dynamically adjusts



to adapt to run-time non-uniformities among wanted it to simplify the task of the run-time
cluster systems performing theame task. system in migrating functions and in monitoring
ABACUS complements River by adapting the resources they consume. As for the run-
function placement dynamically in the presencetime system, our goals were to improve overall
of multiple differenttasks. performance, through effective placement, and
to achieve low monitoring overhead. Moreover,
Equanimity is a system that, like BACUS, it was designed to scale to large cluster sizes.
dynamically balances service between a singleOur first ABACUS prototype largely meets these
client and its server [14]. BAcus builds goals.
on this work by developing mechanisms for
dynamic function placement in realistic cluster The ABACUS programming model encourages
environments, which include such complexitiesthe programmer to compose data-intensive
as resource contention, resource heterogeneityapplications from explicitly-migratable,
and workload variation. functionally independent components or objects.
Thesemobile objects provide explicit methods
Hybrid shipping [10] is a technique proposed that checkpointand restore their state during
to dynamically distribute query processing load migration. At run-time, an application and
between clients and servers of a databasdilesystem can be represented as a graph of
management system. This technique uses communicating mobile objects. This graph can
priori knowledge of the algorithms implemented be thought of as rooted at the storage servers
by the query operators to estimate the bestby anchored (non-migratabledtorage objects
partitioning of work between clients and servers. and at the client by an anchorednsoleobject.
Instead, ABAcCUS applies to a wider class The storage objects provide persistent storage,
of applications by relying only on black-box while the console object contains the part of the
monitoring to make placement decisions, without application that must remain at the node where
knowledge of the semantics or algorithms the application is started. Usually, the console
implemented by the application components.  part is not data intensive. Instead, it serves to
interact with the user or the rest of the system at
Process migration systems such as Condor [7}he start node and typically consists of thein
and Sprite [8] developed mechanisms for function in a C/C++ program. This console part
coarse-grain load-balancing among clusterinitiates invocations that are propagated by the
systems, but did not explicitly support fine-grain ABACUS run-time to the rest of the graph.
function placement or adapt to inter-function
communication. Mobile programming systems As shown in Figure 1, the BACUS run-time
such as Emerald [18] and Rover [17] do supportsystem consists of (i) a migration and location-
fine-grain mobility of application objects, but transparent invocation component, binding
they leave migration decisions to the application manageifor short; and (ii) a resource monitoring
programmer. Similarly, mobile agent systems, and management componentr@source manger
such as Mole [26] and Agent Tcl [12], enable for short. The first component is responsible
agent migration but do not provide algorithms for the creation of location-transparent references
or mechanisms to decide where agents shouldo mobile objects, for the redirection of method
be placed. A&Aacus builds on such work by invocations in the face of object migrations,
providing run-time mechanisms that automateand for enacting object migrations. Also, each

migration decisions. machine’s binding manager notifies the local
resource manager of each procedure call to and
3  Overview of ABACUS return from a mobile object.

To explore the benefits of dynamic function The resource manager uses the notifications
placement, we designed and implemented thd© collect statistics about bytes moved between

ABACUS prototype system and ported several ©Pi€Cts and about the ;esources ”S‘l‘lad by the
test applications to it. BACUS consists of a °PI€Cts €.g, amount of memory allocated,

programming model and a run-time system. ournUmber of instructions ~executed per byte
goal was to make the programming model easyproces:sed). A resource manager also monitors
for application programmers to use. Further, Wethe load on its local processor and the



RPC. Because the focus of our prototype is on
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Figure 1: An illustration of an Aacus object The Asacus programming model has
graph, the principal AAcus components, and their two principal aspects:mobile objects which
interactions. This example shows a filter application represent the unit of migration and placement,
accessing a striped file. Functionality is partitioned and aniterative processing modelvhich defines
into objects. Dark ovals depict mobile objects, while how mobile objects are composed into entire
clear ovals mark anchored objects. Inter-object methodgata processing applications.

invocations are transparently redirected by the location

transpare_nt invocation component of theAcus run- 4.1 Mobile objects

time. This component also updates a local resource
monitoring component on each procedure call and . . . . .
return from a mobile object (machine-local arrows A mobile object in AsAcus is explicitly .
labeled “U”). Clients periodically send digests of this declared by the programmer as such. It consists

collected information to the server. Resource manager®f state and the methods that manipulate that
at the server collect the relevant statistics and initiatestate. A mobile object is required to implement
migration decisions (arrows labeled “M”). a few methods to enable the run-time system to
create instances of it and migrate it. Mobile
objects are usually of medium granularity—they
are not meant to be simple primitive types—
experienced stall time on network transfers performing a self-contained processing step that
to and from the storage servers that are activelyis data intensive, such as parity computation,
accessed by local mobile objects. Server-sidecaching, searching, or aggregation.
resource managers collect statistics from client-
side resource managers and employ an analytic Mobile objects have private state that is not
model to predict the performance benefit of accessible to outside objects, except through
moving to an alternative placement. The modelthe exported interface. The implementation of
also takes into account the cost of migrations,a mobile object is internal to that object and
including the time wasted waiting until the is opaque to other mobile objects and to the
object is quiescent and the time wasted for ABACUS run-time system. The private state
checkpointing the object, transferring its state, consists of embedded objects and references to
and restoring it on the target node. Using this external objects. A mobile object is responsible
analytic model, the server-side resource managefor saving its private state, including the state of
arrives at the placement with the best benefit  all embedded objects, when i@heckpoint ()
If this placement is different from the current method is called by Aacus. It is also
configuration, the necessary object migrationsresponsible for reinstating this state, including
take place. the creation and initialization of all embedded
objects, when the run-time system invokes the
The ABACUS prototype is written in C++. We Restore() method, after it has been migrated to
leverage the language’s object-oriented features new node. Th€heckpoint () method saves
to simplify writing our mobile objects. For our the state to either an in-memory buffer or to afile.
inter-node communication transport, we use DCEThe Restore () method can reinstate the state

4 Programming model




from either location. Both methods are invoked placement, we have implemented an object-based
when there is no external invocation active within distributed filesystem and a few data intensive
the mobile object. applications. We describe them in this section
and report on their performance in Section 6.
Each storage server (i.e., a server with a data
store) provides local storage objects exporting a Object-based distributed filesystem.
flat file interface. Storage objects are accessibléApplications often require a variety of services
only at the server that hosts them and therefordrom the underlying storage system. BACUS
never migrate. The migratable portion of the enables filesystems to be composed of explicitly
application lies between the storage objects ormigratable objects, each providing storage
one side and the console object on the otherservices such as reliabilitg(g, RAID), caching,
Applications can declare other objects to beand application-specific functionality. This
non-migratable. For instance, an object thatapproach was pioneered by the stackable and
implements write-ahead logging can be declaredccomposable filesystem work [13, 21] and by the
by the filesystem as non-migratable, effectively Spring object-oriented operating system [20].
anchoring it to the storage server where it is

started (usually the server hosting the log). The ABAcuUS filesystem provides coherent file
and directory abstractions atop the flat file space
4.2 lterative processing model exported by base storage objects. A file is

associated with a stack of objects when it is
Synchronous invocations start at the top-Created representing the services that are bound

level console object and propagate down theto that file. For instance, Only “important" files
object graph_ Each invocation returns backil’]C'Ude a RAID object in their stack. When a
to the console object with a result after a file is opened, the top-most object is instantiated,
Speciﬁed number of app”ca‘[ion records ha\/eWhiCh in turn instantiates all the lower level
been processed. Once an invocation returns t@bjects in the object graph. Access to a file
the console, objects in the graph are usually nc@lways starts at the top-most object in the stack
longer active. Objects are activated again by thednd the run-time system propagates accesses
nextiteration, which starts with a new invocation down to lower layers as needed.
initiated by the console. Sometimes, objects
may become “spontaneously” active, initiating The prototype filesystem is distributed.
invocations before any request is received fromTherefore, it must contain, in addition to
top-level objects. This occurs when objectsthe layers that are typically found in local
perform background work (such as write-behind filesystems (such as caching and RAID), services
in a cache object), although that is not assumed© support inter-client file and directory sharing.
to be the common mode of Operation_ In particular, the ﬁlesystem allows both file
data and directory data (data blocks) to be
The amount of data moved in each invocationcached and manipulated at trusted clients.
is an application-specific number of records, andBecause multiple clients can be concurrently
not the entire file or data set at once. This sharing files, we implement AFS style callbacks
iterative property is required by our monitoring for cache coherence [15]. Similarly, because
and migration system. Bacus accumulates Multiple clients can be concurrently updating
statistics on return from method invocations for directory blocks, the filesystem includes a
use in making object migration decisions. If timestamp-ordering protocol to ensure that
the program makes a Sing|e procedure call dowrﬂpdates performed at the clients are consistent
a stack of objects, Bacus will not collect before they are committed at the server. This
this valuable information until the end of the scheme is highly scalable in the absence of
program, at which point any migration would be contention because it does not require a lock

useless. server or any lock traffic. In Section 6.5, we
describe how A&Acus automatically changes
4.3 Examples the concurrency control protocol during high

contention to a locking scheme by simply

To stress the AACUS programming model —2dapting object placement.

and evaluate the benefit of adaptive function



Client A Cliont B entries. The isolation/atomicity object provides
support for both cache coherence and optimistic
Application interface - concurrency control, and also ensures the

App

VFSlayerinterface  gtomicity of multi-block writes to a directory.
Directory block For performance reasons, the implementation
caching and updates  of the jsolation/atomicity object is specialized
@ File caching to directory semantics and is therefore different
from the RAID 5 isolation/atomicity object

RAID (parity,
reconstruction)

described above. This object ensures cache

coherence by interposing on read and write calls,

DIR 1\ Race detection installing callbacks on cached blocks durin

Isolation | (timestamp checks) g . . g

Isolation Atomicity | write-ahead logging ~ "€@0l Calls and breaking relevant callbacks during

(tomicity . writes. It ensures proper concurrency control
Persistent storage
Sewerc (f'at-f”einterfacg) among simultaneous updates by timestamping
cache blocks [5] and exporting a special
CommitAction() method that checks specified
Figure 2: The architecture of the object-based readsets‘f’md wnteSet.sfor Conﬂ_'Cts'l_ F'nal_ly’
distributed filesystem built atop @acus, The the atomicity of multi-block writes is provided
figure shows a typical file and directory object stack by ensuring that a set of blocks (possibly from
(a). The object placement shown is the default for differing objects and devices) are either updated
high-bandwidth networks and trusted clients. Also in their entirety or not updated at all, by using a
shown are the component filesystem objects which arenrite-ahead log that is shared among all of the

implemented to date and a brief description of their jnstances of the isolation/atomicity object.
function (b).

Isolation
Atomicity,

(a) Typical object placement (b) Filesystem objects

The ABAcus filesystem can be accessed in
two ways. First, applications that include

By default, each file's graph consists of a ABACUS objects can directly append per-file

filesystem object providing the VFS interface to ©PJ/éct subgraphs onto their application object
applications, a cache object, an optional RAID 59raphs for each file opened. ~ Second, the

object, and one or more storage objects. Tof‘BACUS filesystem can be mounted as a
ensure that parity is not corrupted by racesstandard filesystem, via VFS-layer redirection.

involving concurrent writes to the same stripe, Unmodified appth:Iatlons ﬁs'”g the stgrr]]dar:d
a RAID isolation/atomicity object is anchored POSIX system calls can thus interact with the

to each storage server. This object intercepts” BACUS filesystem. Although it does not allow
all reads and writes to the base storage objece9acy applications to be migrated, this second

and verifies the consistency of updates befordechanism does allow legacy applications to
committing them. The protocols used by this befnele from the filesystem objects adaptively
isolation object are highly scalable and are Migrating beneath them.

described elsewhere [2]. The cache object keeps

an index of a particular object’s blocks in the
shared cache kept by theBAcus filesystem

Object-based applications. Data-intensive
applications can be similarly decomposed into

process. The RAID 5 object stripes and maintainsCPIECts that perfc(;jrm operations such as ssarch,
parity for individual files across sets of storage 299regation, Ipr data m'ﬂ'ng' Porﬁmg a data-
servers. The storage objects provide flat storagé"ﬂ'tens“_"':'hafpp |cagon, such as sea;]c : “MIAUS
and can be configured to use either the standaré Straightforward.  Most search applications
Linux ext? filesystem or CMU's Network- already 'lterate over input daFa by invoking
Attached Secure Disks (NASD) prototype [11] as SUccessiveread bca]\clrls to the filesystem a”h(?'
backing store. Figure 2 shows a sketch of typicalOPerating on a buffer at a time. Porting this
file and dlrectory stacks. 1The readSet (writeSet) consists of the list of blocks
read (written) by the client. A directory operation such as
Each directory’s graph consists of a directory MkDir () requires rea(_jing all the di_rectory blocks to_ ensure
object an isolation/atomicity object and a the name does not exist then updating one block to insert the
' . . : . new name and inode number. The readSet in this case would
storage .Oble?t- The directory object prowdes contain all the directory blocks and their timestamps and the
POSIX-like directory calls and caches directory writeSet would contain the block that was updated.




kind of application simply requires encapsulating location. ABACUS maintains the information
the filtering component of the search into a necessary to perform inter-object invocations in
C++ object and writingcheckpoint/restore a per-node hash table that maps =i to a
methods for it. These methods are also relatively(node, objectreferencewithin_node) pair. As
straightforward, since the state often consists ofmobile objects move between nodes, this table
just the positions in the input and output files, andis updated to reflect the new node and the new

the contents of the current buffer. object reference at that node. Thid is passed
as the first argument of each method invocation,

5 Run-time system allowing the system to properly redirect method
calls.

The ABACUS run-time system consists of per- ] ] ) )
node binding managers and resource managers. At run-time, this web of objects constitutes
Each binding manager is responsible for the® 9raph whose nodes represent objects and

instantiation of mobile objects and the invocation Wh0S€ edges represent invocations between
of their methods in a location-transparent objects. For objects in the same address space,

manner (Section 5.1) and for the migration of invocations are implemented via procedure calls,

objects between cluster nodes (Section 5.2)@nd data is passed without any extra copies.

The resource managers collect statistics abouf©r Objects communicating across machines or
resource usage and availability (Section 5.3)2ddress spaces, remote procedure calls (RPCs)

and use these measurements to adapt placemefif¢ employed.
decisions to improve total application response ) _ _
time (Section 5.4). 5.2 Object migration

5.1 Objectinstantiation and invocation In addition to properly routing object calls,
ABACUS binding managers are responsible for
The two kinds of nodes in an#acus cluster enacting migration. Consider migrating a given
are clients and servers. Servers are nodes ofbject from asource nodéo atarget node First,
which at least one base storage object resideghe binding manager at the source node blocks
and clients are nodes that execute applicationgiew callsto the migrating object. Then, the
that access storage servers. Since servers cdinding manager waits until all active invocations
also execute applications, one storage server caift the migrating object have drained (returned).
potentially be a client of another server. Migration is cancelled if this step takes too long.

Applications instantiate mobile objects by Next, the object is checkpointed locally by
making a request to the BAcCUs run-time  invoking itsCheckpoint () method. The object
system. For example, when filtering a file, the allocates an in-memory buffer to store its state or
application console object will request a filter writes to the filesystem if the checkpoint size is
object to be created. The run-time system createtarge. This state is then transferred and restored
the object in memory by invoking the theew  On the storage node. Then, the location tables
operator of the C++ run-time. at the source and target nodes are updated to

reflect the new location. Finally, invocations are

ABAcusalso allocates and returns to the caller unblocked and are redirected to the proper node
a network-wide unique run-time identifier, called Vvia the updated location table. This procedure
a rid, for the new object? The caller uses extends to migrating subgraphs of objects.
the rid to invoke the new mobile object. The
rid acts as a layer of indirection, allowing Location tables are not always accurate.
objects to refer to other objects without knowing Instead, they provide hints about an object’s
their current location. The Bacus binding  location, which may become stale. Nodes other
manager mediates method invocations and usethan the source and target that have cached hints
rids to forward them to the object’s current about an object’s location will not be updated

> — P o when a migration occurs. However, stale data is
b Therid s a network-wide identifier, which is generated qetected and corrected when these nodes attempt

y concatenating the node identifier where the object is . .
created and a local object identifier that is unique within that {0 INVOke the object at the old node. At that
node. time, the old node notifies them that the object




has migrated. their processing in a stream-like fashion through
a small stack of objects.

For scalability reasons, nodes are not required
to maintain forwarding pointers for objects that Memory consumption. ABACUS monitors
they have hosted at some point in the pastthe amount of memory dynamically allocated by
Consequently, the old node may not be ablean object as follows. On each procedure call
to inform a caller of the current location of an or return from a mobile object, thgid of the
object. In this case, the old node will redirect the thread making the call is recorded. Thus, for at
caller to the node at which the object originated, any point in time, the run-time system knows the
called thehome node The home node can be currently processing mobile object for each active
easily determined because it is encoded in thehread in that address space. Wrappers around
object'srid. The home node always has up- each memory allocation routine.§, malloc,
to-date information about the object’s location free) inspect thepid of the thread invoking the
because during each migration its location tablememory allocation routine and use thatd to
is updated in addition to the tables at the sourcedetermine the current object. This object is then
and target nodes. Because objects usuallycharged for the memory that was allocated or
move between a client (an object’'s home node)freed.
and one of the servers, extra messaging is not
usually required to update location tables during Instructions executed per byte. Given

migration. the number of bytes processed by an object,
computing the instructions/byte amounts to
5.3 Resource monitoring monitoring the number of instructions executed

by the object during the observation window.
Given the processing rate on a node, this amounts

The run-time system uses its intermediary role X : k -
to measuring the time spent computing within

in redirecting calls to collect all the necessary h e .
statistics. By only interposing monitoring code & OPiect. We use a combination of the Linux
at procedure call and return from mobile objects, Nterval timers and the Pentium cycle counter to
ABACUS does not slow down the execution of keep tracl_< of the time spent processing within a
methods within a mobile object. This section MOPile object.

explains how the needed statistics are collected. , )
Stall time. To estimate the amount of

On a single node, threads can cross thelime  a thread spends stalled in an object,

boundaries of multiple mobile objects by making one _needs more information than_ is currently
method invocations that propagate down theProvided by the POSIX system timers. We
stack. The resource manager must charge th&X€nd the getitimer/setitimer system
time a thread spends computing or blocked toCallS 10 support a new type of timer, which
the appropriate object. Similarly, it must charge W& denote ITIMER BLOCKING. This timer
any allocated memory to the proper object. ThGQegrements whenever a thread is blocked and
ABACUS run-time collects the required statistics 'S Implemented as follows: When the kernel
over the previousH seconds of execution,

updates the system, user, and real timers for
which we refer to as the observation window, (N€ active thread, it also updates the blocking
We describe how some of these statistics ar

dimers of any threads in the queue that are
collected: marked as blockedTASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE).

Data flow graph. The bytes moved
between objects are monitored by inspecting thed-4 Dynamic Placement
arguments on procedure call and return from a
mobile object. The number of bytes transferred The resource manager on a given server seeks
between two objects is then recorded in a timedto perform the migrations that will result in the
data flow graph. This graph maintains moving minimal average application response time across
averages of the bytes moved between every paiall the applications that are accessing it. This
of communicating objects in a graph. Theseamounts to figuring out what subset of objects
data flow graphs are of tractable size becausexecuting currently on clients can benefit most
most data-intensive applications do the bulk of from computing closer to the data. Migrating an



object to the server could potentially reduce theother objects executing at the target node (as
amount of stall time on the network, but it could a result of the increased load on the node’s
also extend the time the object spends computingprocessor). When considering different object
if the server’s processor is overloaded. placements, we treat the memory available at
the server as a fixed constraint. Together, the

Resource managers at the servers use aohanges in stall time and execution time amount
analytic model to determine which objects shouldto the benefit of the new placement. In computing
be migrated from the clients to the server andthis benefit, our analytic model assumes that
which objects, if any, should be migrated back history will repeat itself over the next window
from the server to the clients. The analytic model of observation (the nextl seconds). The cost
considers alternative placement configurationsassociated with a placement is estimated as the
and selects the one with the beastt benefit sum of a fixed cost (the time taken to wait until
which is the difference between the benefitthe object is quiescent) plus the time to transfer
of moving to that placement and the cost of the object’s state between source and destination
migrating to it. This net benefit represents the nodes. This latter value is estimated from the
estimated reduction in execution time over thesize of the checkpoint buffer and the bandwidth
nextH seconds. between the nodes.

A migration is actually enacted only if § Performance evaluation
the server-side resource manager finds a new

placement whose associated net benefit exceeds |y this section, we show how performance
aconfigurable thresho!tIBThr?sh This threshold depends on the appropriate placement of
value is used to avoid migrations that chasef nction. The subsections that follow give
small improvements, and it can be set to reﬂeCtincreasingly difficult cases whereBACUS can
the confidence in the measurements and thggapt function placement even when the correct
models used by the run-time system. Serverigcation is hard or impossible to anticipate
side resource managers do not communicate with design-time.  This includes scenarios in
one another to figure out the globally optimal \yhich the objects’ correct location is based on
placement. A server-side resource managehardware characteristics, application run-time
decides on the best alternative placementyarameters, application data access patterns,
considering only the application streams thatang inter-application contention over shared
access it. This design decision was taken forgata. This also includes scenarios that stress
robustness and scalability reasons. adaptation under dynamic conditions: phases of
) ] ) application behavior and contention by multiple
The details of the computation required 10 gppjications. We could not perform a fair
estimate the net benefit are discussed in anomparison of applications running orBACUS
associated technical report [3]. Here, we outlinetg those running on a network filesystem, such
the intuition behind the computation. The server- a5 NFs, because our filesystem implementation
side resource manager receives the per-objedjiffers from that of Linux's NFS. The differences
measurements described above. It also recelveq?ive ABAcUS applications advantages that have

statistics about the client processor speed angije to do with adaptive function placement.
current load and collects similar measurements

about the local system and locally executingg 1  Evaluation environment
objects. Given the data flow graph between

objects, the measured stall time of'client—side Our evaluation environment consists of eight
objects, and the latency of the client-Server .jioniq and four storage servers. All twelve nodes

link, the model estimates the change in stall 3o giandard PCs running RedHat Linux 5.2
time if an object changes location. Given the and are equipped with 300MHz Pentium Il

instructions per byte and the relative load andprocessors and 128MB of main memory. None
speed of the client/server processors, it estimategf our experiments exhibited significant paging
the change in execution time if the object Changesactivity. Each server contains a single Maxtor
placement. In addition to the change in executiong,3-0p4 |DE disk drive (4GB, 10ms average
timg for the migrated .object, the model also seek, 5200RPM, up to 14MB media transfer

estimates the change in execution time for therate). Our environment consists of two networks:



a switched 100Mbps Ethernet, which we refer to Client A

as theSAN (server-area network) and a shared Cllent 8
10Mbps segment, which we refer to as thaN
(local-area network). All four storage servers are Filesys

directly connected to the SAN, whereas four of

the eight clients are connected to the SAN (called SAN LAN
SAN clients), and the other four clients reside
on the LAN (the LAN clients). The LAN is

bridged to the SAN via a 10Mbps link. While

these networks are of low performance by today’s

standards, their relative speeds are similar to ¥
those seen in high-performance SAN and LAN |s§@'t_%n |s§|’§'1_i%_n
environments (Gbps in the SAN and 100 Mbps in Lomiely Lomet
the LAN).

Server C Server D

Storage

The bar graphs in the following sections
adhere to a common format. Each graph show

the elapsed time of several configurations . . )

. . . . . per-file parity code and accesses storage objects
of an experlme!’lt W'Fh a migrating object. running on the storage devices. We show one
For each configuration, we report three pinging of the stack (Client A) where the RAID object
numbers: the object (1) statically located atruns at the client, and another binding (Client B)
the client, (2) beginning at the client, but with where the RAID object runs at one of the storage
ABAcus dynamically monitoring the system and devices. Thicker lines represent more data being
potentially migrating the object, and (3) statically moved. The appropriate configuration is dependent
at the storage server. Graphs with confidenceon the bandwidth available between the client and
|nterva|s report averages over flve runs Wlth Storage devices. If the client LAN is SlOW, Client B's
90% confidence. We have intentionally chosenPartitioning would lead to lower access latencies.
smaller benchmarks to underscorBACUS's
ability to adapt quickly. We note that the
absolute benefit achieved by dynamic function
placement is often a function of the duration

igure 3: This figure shows a file bound to an
application accessing a RAID object which maintains

Experiment. Software RAID is an example
of a function that moves a significant amount

gf ahpart;(cular beqchmark,l and tr:at Iongcle(; of data and often touches every byte (computes
enchmarks operating on larger files would y¢ pipise XOR of the contents of multiple

amortize adaptation delays more thoroughly. p o0 s)  Files in the Aacus filesystem can be

Throughgut the experiments in this section, thebound to a RAID object that provides storage
observation windowt1, was set to 1 second, and  gyiing and fault-tolerance. The RAID object

the threshold benefiBrhresh Was set to 30% of 1 aintaing parity on a per-file basis, stripes data

the observation window. across multiple storage servers, and is distributed
to allow concurrent accesses to shared stripes by
6.2 Adapting to network topology/speed  clients by using a timestamp-based concurrency
control protocol [2]. The RAID object can
Issue. Network topology/speed dictate execute at either the client nodes or the storage
the relative importance of cross-network servers. The object graph used by files for this
communication relative to server load. Here experimentis shown in Figure 3.
we evaluate the ability of Aacus to adapt
to different network topologies. We default to  The proper placement of the RAID object
executing function at clients to offload contendedlargely depends on the performance of the
servers. However, BacUus moves function to a network connecting the client to the storage
server if a client would benefit and the server hasservers. Recall that a RAID small write involves
the requisite cycles. The goal is to see whetherfour 1/Os, two to pre-read the old data and
ABAcUS can decide when the benefit of server- parity and two to write the new data and parity.
side execution due to the reduction in network Similarly, when a disk failure occurs, a block
stall time exceeds the possible slowdown due toread requires reading all the blocks in a stripe and
slower server-side processing. XORing them together to reconstruct the failed
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Figure 4: This figure shows the results of our RAID

benchmark. Contention on the server's CPU resourcefIgure 5 T_he_performance_of our fl_Iter s
make client-based RAID more appropriate, except inshown in this figure. Executing the filter at the storage

the LAN case. where the network is the bottleneck.  S€rver is advantageous in all but the third configuration,
' " in which the filter is computationally expensive and

runs faster on the client, has more CPU resources
available.

data. This can result in substantial network traffic
between the RAID object and the storage servers.

We construct two workloads to evaluate RAID In this section, we show that the data being

performance on AACUS. The first consists ,.cessed by a filter (which is set by an argument)

of two clients writing two separate 4MB fileS jetermines the appropriate location for the filter
sequentially. The stripe size is 5 (4 data + parity) ( ryn. For example, there's a drastic difference
and the stripe unitis 32KB. The second workload betweengrep kernel Bible.txt and grep

consists of the two clients reading the files back, . 1 15 uxBible. txt.
in degraded mode (with one disk marked failed).

o . Experiment. As data sets in large-scale
Results. As shown in Figure 4, executing the p, \qinesses continue to grow, an increasingly

RAID object at the server improves RAID small 00tant user application is high-performance
write performance in the LAN case by a factor goa1ch or data filtering. Filtering is often a highly

of 2.6 over executing the quect at the host. Thegq|active operation, consuming a large amount
performance of the experiment WherBACUS ¢ a3 and producing a smaller fraction. We

adaptively places the object is within 10% of ;onsircted a synthetic filter object that returns
optimal. Conversely, in the SAN case, executing, onfigurable percentage of the input data to the
the RAID object locally at the clientis 1.3X faster oot apove it. Highly selective filters represent

because the client has a lower load and is abl§ye,) candidate for execution close to the data, so
to perform the RAID functionality more quickly. long as storage resources are available.
Here, ABAcUS arrives within 1% of this value.

The advantage of client-based RAID is slightly |, is experiment, we varied both the filter's

more pronounced in the more CPU-INteNsiVe so o tivity and CPU consumption from low to
degraded read case, in which the optimal Iocatlonnigh. We define selectivity ad — output/input).

is almost twice as fast as at the server. Here, fijer abeled low selectivity outputs 80% of
ABAcuUSs arrives within 30% of optimal. In every the data that it reads, while a filter with high

instance, BAcUS automatically selects the best selectivity outputs only 20% of its input data.

location for the RAID object. A filter with low CPU consumption does the
minimal amount of work to achieve this function,
6.3 Adapting to run-time parameters while a filter with high CPU consumption
simulates traversing large data structuresy(
Issue. Applications can exhibit drastically the finite state machines of a text search program
different behavior based on run-time parameterslike grep).



load on the server. However, enabling client-

o 'g - side caching can yield the opposite effect under
~ T Iﬁfjg,'fé% certain access patterns. In this subsection, we
“r Atservef 7 ghow that ABACUS appropriately migrates the

per-file cache object in response to data access
patterns via black-box monitoring.

-
[S)

Experiment. Caching in ABAcUS is provided
by a mobile cache object. Consider an
application that inserts small records into files
stored on a storage server. These inserts require a
read of the block from the server (arstallation

Elapsed time (s)

Insert, Insert, Scan, Scan,

LAN SAN CAN SAN read) and then a write-back of the entire block.
Even when the original block is cached, writing
a small record in a block requires transferring
he entire contents of each block to the server.

Figure 6: The figure shows that client-side caching
is essential for workloads exhibiting reuse (Scan), but

causes pathological performance when inserting smal id licati di hed
records (Insert). ARAcUS automatically enables and ow, consider an application reading cache

disables the client caching by placing the cache objectd?‘ta- Here, we desire the cache to reside on the
at the client or at the server. client.

We carried out the following experiments to
evaluate the impact of andBAcus's response
Results. Figure 5 shows the elapsed time to application access patterns. In the first
to read and filter a 16MB file in a number benchmarktable inserf the application inserts
of configurations. In the first set of numbers, 1,500 128byte records into a 192KB file. An
ABAcuUs migrates the filter from the client to insert writes a record to a random location in the
the storage server, coming within 25% of the file. In the second benchmarkable scan the
ideal case, which is over 5X better than filtering application reads the 1,500 records back, again
at the client. Similarly, MAcus migrates the in random order. The cache, which uses a block
filter in the second set. While achieving better sjze of 8KB, is large enough for the working set
performance than statically locating the filter at of the application. Before recording numbers, the
the client, ABAcuUs reaches only within 50% of experiment was run to warm the cache.
optimal because the time required foBACUSto
migrate the object is a bigger fraction of total run-  Results. As shown in Figure 6, locating the
time. In the third set, we run a computationally cache at the server for the insert benchmark is
expensive filter. We simulate a loaded or slower2.7X faster than at a client on the LAN, and
storage server by making the filter twice as 1.5X faster than at a client on the SANBAcuUS
expensive to run on the storage server. Here, theomes within 10% of optimal for the LAN case,
filter executes 1.8X faster on the clientBACUS  and within 15% for the SAN case. The difference
correctly detects this case and keeps the filter ons due to the relative length of the experiments,
the client. Finally, in the fourth set of numbers, causing the cache to migrate relatively late in the
the value of moving is too low for BACUSto  SAN case (which runs for only a few multiples
deem it worthy of migration. Recall that the of the observation window). The table scan
migration threshold is 30%, and note that this benchmark highlights the benefit of client-side
applies to theestimatedbenefit computed by caching when the application workload exhibits

ABAcUs and not the real benefit. reuse. In this case, Bacus leaves the cache at
the client, cutting execution time over caching at
6.4 Adapting to data access patterns the server by over 40X and 8X for the LAN and

SAN tests respectively.

Issue.Client-side caches in distributed file and
database systems often yield dramatic reductiorf-5 Adapting to contention over shared
in storage access latencies because they avoid data
slow client networks, increase the total amount
of memory available for caching, and reduce the Issue. Filesystem functionality, such as



caching or namespace updates/lookups, is often_—Stens _ Clent® clentA Clent®

distributed to improve scalability [15]. When

contention for the shared objects between clients|(D)| |@ED ]

|
is low, executing objects at the client(s) accessing \
Network (SAN
or LAN)

them yields higher scalability and better cache
Directory\ Timestamp checks
Isolation | cache callbacks
Atomicity, Logging

locality. When contention over a shared object
increases, a server-based execution becomes
more efficient. In this case, client invocations
are serialized locally on the server, avoiding the
overhead of retries over the network. This kind of

Serialization
at server under
high contention

Isolation

Atomicity)
adaptation also solves performance cliffs caused

by false sharing in distributed file caches. When Server C Server C
several clients are writing to ranges in a file that
happen to share common blocks, the invalidation
traffic can degrade performance so that write-
through to the server would be preferable.

Figure 7: This figure shows directory updates from
multiple contending clients. While distributing
directory management to clients is beneficial under low
contention, under high contention it results in a flurry
] of retries per directory operation. When the object is
Experiment.  We chose a workload that moved to the storage device, multiple client requests
performs directory inserts in a shared namespac@re serviced by (multiple threads in) the same object,
as our contention benchmark. Directories in serializing them locally without the cost of multiple
ABACUS present a hierarchical namespace likecross-network retries.
all UNIX filesystems and are implemented using
the object graph shown in Figure 7.

) L clients insert 200 files each in private (unique)
When clients access disjoint parts of the directories

directory namespace (i.e.: there are no concurrent

conflicting accesses), the optimistic scheme in rociits. As shown in Figure 8, AACUS
which concurrency cqntrol checks are IC?erformGdreduces execution time for the high contention
by the isolation Ob,JeCt (recal! Section 4'3) workload by migrating the directory object to
works well. Each directory object at a client . carver. In the LAN case. BxcuUS is within
maintains a cache of the directories accesse(io% of the optimal. The oé)timal is 8X better
frequently by that client, making directory wa, |ocating the directory object at the host.
reads fast. Moreover, directory updates aresg,cys comes within 25% of optimal for the
minimally cheap because ”OI mlftadata Pr®high contention, SAN case (which is 2.5X better
reads rrare required, hand ?f? oc T]essagllsgman the worst case). BWCUS estimates that
is performed.  Further, offloading the bulk nqing it closer to the isolation object would

of the work from the server results in better .y q vetries cheaper. It adapts more quickly in
scalability and frees storage devices to exeCutgne | AN case because the estimated benefit is

demanding workloads from competing clients. g roaser acus had to observe far more retries

When contention is high, however, the number ;4 e ajidation traffic on the SAN case before
of retries and cache invalidations seen by thedeciding to migrate the object.

directory object increases, potentially causing
several round-trip latencies per operation. When Under low contention. AACUS makes

contention increases, we desire the direCtorydifferent decisions in the LAN and SAN cases
object to migrate to the storage device. ThiS g ating the directory object to the server in
would serialize client updates through one object,the former and not migrating it in the latter

thereby eliminating retries. We started the benchmark from a cold cache,
causing many installation reads. Hence, in the

We constructed two benchmarks to evaluate.,qe \here there is little contention and the

how ABAcus responds to different levels of application is running over the LAN, BACUS

directory contir;tlon. hThefflrst I'IS a high ogtimates that migrating the directory object
contention workload, where four clients insert 1, o storage server is worthwhile, because

200 files each in a shared directory. They oy5igs the latency of the low-speed LAN.
second is a low contention workload where four However, in the SAN case, the network is



6.6 Adapting to application phases

N
<
4 R At client . . .

I Adaptive| | Issue. Having established that optimal
= Atseve] | placement depends on several system and
2% 3 | workload characteristics, we further note that
£ N Q these characteristics change with time on most
?,zo 3 o g | systems. In this subsection, we are concerned
g 9 al 23 with characteristics that vary with algorithmic
v & SRS changes within the lifetime of the application.

10 o

Applications rarely exhibit the same behavior or
consume resources at the same rate throughout
their lifetimes. Instead, an application may
change phases at a number of points during
its execution in response to input from a

0— - n - - -
High contention, High contention, Low contention, Low contention,
LAN SAN LAN SAN

Figure 8: This figure shows the time to execute our r or fi ; result of algorithmi
directory insert benchmark under different levels of use 0' a fie O, as f”‘ esu' O_ algo ¢
directory contention. AACUS migrates the directory propertles. MultlphaSIC applications make.a
object in all but the fourth case. particularly compelling case for the dynamic

function relocation that AAcus provides.

Experiment. To explore multiphasic behavior,

we revisit our file caching example. Specifically,
_ Insert | Scan| Insert| Scan| Tot. | \ye ryn a benchmark that does an insert phase,
Client | 26.0) 04| 283] 04552 yjowed by scanning, followed by inserting, and
Adapt. || 117 7.2| 12.1| 3.5] 345 concluding with another scan phase. The goal is
Server|| 78] 292| 7.7] 26.0| 70.7| to determine whether the benefit estimates at the

Opt. 78| 04] 7.7| 0.4]16.3] server will eject an application that changed its
behavior after being moved to the server. Further,
we wish to see whether Bacus recovers from

Table 1: Inter-application phases. This table shows

the performance of a multiphasic application in the ) . . .
static cases and undeBAcus. The application goes bad history quickly enough to achieve adaptation

through aninsert phase, followed by a scan phase, bacwat . is useful t9 an application that exhibits
to inserting, and concluding with another scan. The Multiple contrasting phases.

table shows the completion time in seconds of each
phase under each scheme. Results. Table 1 shows that Bacus migrates

the cache to the appropriate location based on
the behavior of the application over time. First,
ABAcCUS migrates the cache to the server for the
insert phase. Then, Bacus ejects the cache
fast enough that BAcUs cost-benefit model o©bject from the server when it detects that the

estimates the installation read network cost to becache is being reused by the client. Both static
limited. Indeed, the results show that the staticchoices lead to bad performance in alternating
client and storage server configurations for thePhases. Consequently, BACUS outperforms
SAN case differ by less than 30%, our migration both static cases—by 1.6X compared to the
threshold.  This benchmark does not exhibit client case, and by 2X compared to the server
a case where client-side placement is bette}case. The optimal row refers to the minimum
because our client population is of limited size €xecution time picked alternatively from the
(only four nodes). Note also that the directory client and server cases. We see thatrdus
objects from different clients need not all migrate iS @pproximately twice as slow as the optimal.
to the server at the same time. The server carf hiS is to be expected, as this extreme scenario
decide to migrate them independently, basedchanges phases fairly rapidly.

on its estimates of the migration benefit for

each client. Correctness is ensured even if onlyd.7 Adapting to competition

someobjects migrate, because all operations are

verified to have occurred in timestamp order by Issue. Shared storage server resources are
the underlying isolation/atomicity object. rarely dedicated to serving one workload. An




additional complexity addressed byBAcuUS

is provisioning storage server resources to
competing clients.  Toward reducing global
application execution time, BACUS resolves
competition among objects that would execute
more quickly at the server by favoring those
objects that would derive a greater benefit from
doing so.
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Filter 1 move to client
—

2000—

Experiment. In this experiment, we run ]
two filter objects on a 32MB file on our LAN. : .
The filters have different selectivities, and hence . Filter 2 moves ‘°§~]'j?f'/ ]
derive different benefits from executing at the | Il SR I

. . 0 10 20 30 40 50 60 70
storage server. In detail, Filter 1 produces 60% Elapsed time (s)
of the data that it consumes, while Filter 2, being
the more selective filter, outputs only 30% of the _ L _
Figure 9: This figure plots the cumulative number

data it consumes. The storage server’s memory .
resources are restricted so that it can only su orgf blocks searched by two filters versus elapsed
Y SUPPOMine.  Agacuss competition resolving algorithm

one filter at a time. successfully chooses the more selective Filter 2 over
the Filter 1 for execution at the storage server.

Filter 1 moves
1000l tO server

Cumulative # of blocks processed

Results. Figure 9 shows the cumulative
progress of the filters over their execution, and
the migration decisions made bysAcus. The
less selective Filter 1 is started first. BAcus  placement. Consider the case of an application
shortly migrates it to the storage server. Soonthat completely changes behavior right after
after, we start the more selective Filter 2. Shortly ABACUS decides to migrate it, inducing a
thereafter, MAcus migrates the highly selective migration back to the original node, only to
Filter 2 to the server, kicking back the other to its change its behavior again and start another cycle.
original node. The slopes of the curves show thatln this case, the application will always be placed
the filter currently on the server runs faster thanon the “wrong” node and will incur additional
when not, but that Filter 2 derives more benefit migration costs that are linear with the migration
since it is more selective. Filters are migrated frequency, which is about once every history
to the server after a noticeable delay becausavindow. This worst case behavior is currently
the estimated benefit was close to the configureddounded by noticing objects that rapidly ping-
threshold. Longer history windows will amortize pong back and forth between locations and
the migration cost over a longer window of anchoring themin one default placement until the
benefit, resulting in migration occurring sooner. application terminates.

In general, the history window should be at

least long enough to capture many iterations7 Conclusions

up and down the object stack, so that the
statistics collected by Bacus are representative
of application behavior.

In this paper, we demonstrate that optimal
function placement depends on system and
workload characteristics that are impossible to
predict at application design or installation time.
A We propose a dynamic approach where function
placement is continuously adapted by a run-time
system based on resource usage and availability.

e Measurements demonstrate that placement can
case where no migrations occrFurthermore, be decided based on black-box monitoring of

ABAICU,S can, undir patholog;]cal c.or?dmons., application objects, in which the system is
result in worse performance than either static ,iious to the function being implemented.

SThe size of the file filtered was 8 MB. We believe that | Elminary evaluation shows that BACUS,

part of this overhead can be eliminated with a more optimized OUr prOtOtYPe system, can improve applicatipn
implementation. response time by 2-10X. These encouraging

ABAcCUS does place a run-time overhead
compared to traditional implementations.
filter implemented and running on BACUS
runs up to 25% slower than one implemented
directly atop of the Unix Filesystem, in the




results indicate a promising future for this [12]
approach.
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