

Active Disks for Databases

Erik Riedel

Parallel Data Laboratory, Center for Automated Learning and Discovery Carnegie Mellon University www.pdl.cs.cmu.edu/Active

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks for Databases

Outline

Opportunity & Background

Why Databases

Prototype - Performance

Prototype - Code Structure

History

Summary

Parallel Data Laboratory Center for Automated Learning and Discovery

Large database systems - lots of disks, lots of power

System	Proces	Data Rate (MB/s)		
System	CPU	Disks	I/O Bus	Disks
Compaq Proliant TPC-C	4 x 400= 1,600	141 x 200= 28,200	133	2,115
Microsoft Terraserver	8 x 440= 3,520	324 x 200= 64,800	532	4,860
Compaq AlphaServer 500 TPC-C	1 x 500= 500	61 x 200= 12,200	266	915
Compaq AlphaServer 8400 TPC-D	12x612= 7,344	<i>521</i> x 200= 104,200	532	7,815

- assume disk offers equivalent of 200 host MHz
- assume disk sustained data rate of 15 MB/s

Lots more cycles and MB/s in disks than in host

• main bottleneck is backplane I/O bandwidth

Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks execute application-level code on drives

Basic advantages of an Active Disk system

- parallel processing lots of disks
- bandwidth reduction filtering operations are common
- scheduling little bit of computation can go a long way

Parameters for appropriate applications

- execution time dominated by data-intensive "core"
- allows parallel implementation of "core"
- processing cycles per byte of data processed
- "selectivity" of processing
- memory footprint

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Data Mining & Multimedia [VLDB '98]

Data Mining & Multimedia [VLDB '98]

Data Mining - association rules [Agrawal95]

- frequent sets summary counts
- milk & bread => cheese

Database - nearest neighbor search

- k records closest to input record
- with large number of attributes, reduces to scan

Multimedia - edge detection [Smith95]

detect edges in an image

Multimedia - image registration [Welling97]

• find rotation and translation from reference image

Critical properties for Active Disk performance

- cycles/byte => maximum throughput
- memory footprint
- selectivity => network bandwidth

application	input	computation	throughput	memory	selectivity	bandwidth
application	input	(instr/byte)	(MB/s)	(KB)	(factor)	(KB/s)
Select	m=1%	7	28.6	-	100	290
Search	k=10	7	28.6	72	80,500	0.4
Frequent Sets	s=0.25%	16	12.5	620	15,000	0.8
Edge Detection	t=75	303	0.67	1776	110	6.1
Image Registration	-	4740*	0.04	672	180	0.2
Select	m=20%	7	28.6	-	5	5,700
Frequent Sets	s=0.025%	16	12.5	2,000	14,000	0.9
Edge Detection	t=20	394	0.51	1750	3	170

Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks for Databases

Throughput Model

Scalable throughput

- speedup = (#disks)/(host-cpu-speed/disk-cpu-speed)
- (host-cpu/disk-cpu-speed) ~ 5 (two processor generations)
- **selectivity** = #bytes-input / #bytes-output

Performance Model

System Parameters

Application Parameters

Active Disk Parameters

$s_{cpu'} = CPU$ speed of the disk $N_{\rm in}$ = number of bytes processed $s_{cpu} = CPU$ speed of the host r_d' = active disk raw read rate r_d = disk raw read rate N_{out} = number of bytes produced r_n' = active disk interconnect rate r_n = disk interconnect rate w = cycles per byte t = run time for traditional system Traditional vs. Active Disk Ratios t_{active} = run time for active disk system $\alpha_N = N_{in}/N_{out}$ $\alpha_d = r_d/r_d$ $\alpha_n = r_n/r_n$ $\alpha_s = s_{cpu}/s_{cpu}$ Traditional server: $t = max\left(\frac{N_{\text{in}}}{d \cdot r_d}, \frac{N_{\text{in}}}{r_n}, \frac{N_{\text{in}} \cdot w}{s_{\text{opp}}}\right)$ and throughput $= \frac{N_{\text{in}}}{t} = min\left(d \cdot r_d, r_n, \frac{s_{\text{opp}}}{w}\right)$ Active Disks: $t_{active} = max \left(\frac{N_{in}}{d \cdot r_d}, \frac{N_{out}}{r_w}, \frac{N_{in} \cdot w}{d \cdot s_{opu}} \right)$ and throughput active $= \frac{N_{in}}{t_{active}} = min \left(d \cdot r_d', r_n' \cdot \frac{N_{in}}{N_{out}}, d \cdot \frac{s_{opu}'}{w} \right)$ Rewriting yields: throughput_{active} = $min\left(\alpha_d \cdot (d \cdot r_d), \alpha_N \cdot \alpha_n \cdot (r_n), d \cdot \alpha_s \cdot \left(\frac{s_{cpu}}{w}\right)\right)$, Speedup: $S = \frac{(r_n \cdot \alpha_N)}{\min(r_n, \frac{s_{\text{cpu}}}{m})}$ For $1/\alpha_s < d < \alpha_N$, the speedup is: $S = \frac{d \cdot (s_{cpu}/w)}{min(r_n, s_{cpu}/w)}$ and for $d > \alpha_N$, is: $= max\left(\alpha_N \cdot \alpha_n, \alpha_N \cdot \alpha_s \cdot \left(\frac{w \cdot r_n}{s_{cnu'}}\right)\right)$ $\geq d \cdot \alpha_{s}$ $> \alpha_N \cdot max(\alpha_n, \alpha_s)$

Amdahl's Law

$$serial = S$$

$$parallel = \frac{(1-p) \cdot S + \frac{p \cdot S}{n}}{S}$$

Speedup in a Parallel System

- *p* is parallel fraction
- (1 p) serial fraction is not improved

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

http://www.pdl.cs.cmu.edu/Active

Active Disks for Databases Traditional server:

$$t = max\left(\frac{N_{\text{in}}}{d \cdot r_d}, \frac{N_{\text{in}}}{r_n}, \frac{N_{\text{in}} \cdot w}{s_{\text{cpu}}}\right) + serial fraction$$

Active Disks:

$$t_{active} = max\left(\frac{N_{\text{in}}}{d \cdot r_{d}}, \frac{N_{\text{out}}}{r_{n}}, \frac{N_{\text{in}} \cdot w}{d \cdot s_{\text{cpu}}}\right) + serial fraction$$

- adds serial fraction
- fixed part of execution time
- not improved with additional disks

Parallel Data Laboratory Center for Automated Learning and Discovery

Prototype Comparison

Seagate Medallist disks

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed then"

- database machines didn't take over the world
- "Can just do it with a bunch of PCs"
 - cost argument, not covered here

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

ctive Disks

for Databases

Basic Operations

- select scan
- project scan & sort
- join scan & hash-join

Workload

- TPC-D decision support
 - large data, scale factor of 300 GB uses 520 disks
 - ad-hoc queries
 - high-selectivity, "summary" questions
- TPC-C transaction processing
 - not big data
 - operations per second
 - less dramatic speedups

Parallel Data Laboratory Center for Automated Learning and Discovery

http://www.pdl.cs.cmu.edu/Active

Carnegie

Mellon

TPC-D Benchmark

Consists of *high selectivity*, *ad-hoc* queries

		entire que	ſy	scan only			
query input (MB)		result (KB)	selectivity (factor)	input (MB)	selectivity (factor)		
Q1	672	0.2	4.8 million	672	3.3		
Q5	857	0.09	9.7 million	672	3.5		
Q7	857	0.02	3.5 million	672	4.0		
Q9	976	6.5	154,000	672	2.2		
Q11	117	0.3	453,000	115	7.2		

Scale Factor = 1 GB

Simple filtering on input

• factors of 3x and more savings in load on interconnect

Entire queries (including aggregation and joins)

• factors of 100,000 and higher savings

Parallel Data Laboratory Center for Automated Learning and Discovery

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed"

- database machines didn't take over the world
- "Can just do it with a bunch of PCs"
 - cost argument, not covered here

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks for Databases

Active PostgreSQL Select

Experimental setup

- database is PostgreSQL 6.5
- server is 500 MHz Alpha, 256 MB
- disks are Seagate Cheetahs
- vs. n Active Disks
 - 133 MHz Alpha, 64 MB
 - Digital UNIX 3.2g
- ATM networking vs. Ultra SCSI

performance results

- SQL select operation (selectivity = 52)
- interconnect limited
- scalable Active Disks performance

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

Active PostgreSQL Aggregation

Experimental setup

- database is PostgreSQL 6.5
- server is 500 MHz Alpha, 256 MB
- disks are Seagate Cheetahs
- vs. n Active Disks
 - 133 MHz Alpha, 64 MB
 - Digital UNIX 3.2g
- ATM networking vs. Ultra SCSI

performance results

- SQL sum()...group by operation (selectivity = 650)
- cycles/byte = 32
- crossover at four Active Disks (= 500 / 133)
- cpu limited

Active PostgreSQL Join

Experimental setup

- database is PostgreSQL 6.5
- server is 500 MHz Alpha, 256 MB
- disks are Seagate Cheetahs
- vs. n Active Disks
 - 133 MHz Alpha, 64 MB
 - Digital UNIX 3.2g
- ATM networking vs. Ultra SCSI

performance results

- SQL 2-way join operation (selectivity = 8)
- will eventually be network limited

Active Disks for Databases

Active PostgreSQL Join II

Experimental setup

- database is PostgreSQL 6.5
- server is 500 MHz Alpha, 256 MB
- disks are Seagate Cheetahs
- vs. n Active Disks
 - 133 MHz Alpha, 64 MB
 - Digital UNIX 3.2g
- ATM networking vs. Ultra SCSI

performance results

- SQL 5-way join operation
- large serial fraction, Amdahl's Law kicks in

Parallel Data Laboratory Carnegie Center for Automated Learning and Discovery

http://www.pdl.cs.cmu.edu/Active

Mellon

Model Validation (Database)

http://www.pdl.cs.cmu.edu/Active

Active Disks for Databases

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed"

- database machines didn't take over the world
- "Can just do it with a bunch of PCs"
 - cost argument, not covered here

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

PostgreSQL Software Structure

Execute Node

Active Disk Structure

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed"

- database machines didn't take over the world
- "Can just do it with a bunch of PCs"
 - cost argument, not covered here

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Active PostgreSQL - Code Changes

Module	0	riginal	Modi [:] (New &	fied Host Changed)	Active Disk	
	Files	Code	Files	Code	Files	Code
access	72	26,385	-	-	1	838
bootstrap	2	1,259	-	-	-	_
catalog	43	13,584	-	-	-	_
commands	34	11,635	-	-	-	_
executor	49	17,401	9	938	4	3,574
parser	31	9,477	-	-	-	_
lib	35	7,794	-	-	-	_
nodes	24	13,092	-	-	6	4,130
optimizer	72	19,187	-	-	-	_
port	5	514	-	-	-	-
regex	12	4,665	-	-	-	-
rewrite	13	5,462	-	-	-	_
storage	50	17,088	1	273	-	_
tcop	11	4,054	-	-	-	_
utils/adt	40	31,526	-	-	2	315
utils/fmgr	4	2,417	-	-	1	281
utils	81	19,908	-	-	1	47
Total	578	205,448	10	1,211	15	9,185
					New	1,257

How to split operations between host and drives?

Answer: Use existing query optimizer

- operation costs
- per-table and per-attribute statistics
- ok if they are slightly out-of-date, only an estimate

Query	Input Data (KB)	Scan Result (KB)	Optimizer Estimate (KB)	Qualifier Result (KB)	Optimizer Estimate (KB)	Aggregate Result (bytes)	Optimizer Estimate (bytes)
Q1	126,440	35,189	35,189	34,687	33,935	240	9,180
Q4	29,272	2,343	2,343	86	141	80	64
Q6	126,440	9,383	9,383	177	43	8	8

Move ops to drives if there are sufficient resources

• if selectivity and parallelism overcome slower CPU

Be prepared to revert to host as two-stage algorithm

- consider the disk as "pre-filtering"
- still offloads significant host CPU and interconnect

Database - Optimizer Statistics

starelid	staattnum	staop	stalokey	stahikey
18663	1	66	1	+ 600000
18663	2	66	1	20000
18663	3	66	1	1000
18663	4	66	1	7
18663	5	295	1	50
18663	6	295	901	95949.5
18663	7	295	0	0.1
18663	8	295	0	0.08
18663	9	1049	A	R
18663	10	1049	F	0
18663	11	1087	01-02-1992	12-01-1998
18663	12	1087	01-31-1992	10-31-1998
18663	13	1087	01-08-1992	12-30-1998
18663	14	1049	COLLECT COD	TAKE BACK RETURN
18663	15	1049	AIR	TRUCK
18663	16	1049	0B6wmAww2Pg	zzzyRPS40ABMRSzmPyCNzA6
[more.	1			

Attributes

Statistics

[...liore...]

(61 rows)

attrelid	attname	atttypid	attdisbursion	attlen	attnum
18663	l_orderkey	23	2.33122e-06	4	1
18663	l_partkey	23	1.06588e-05	4	2
18663	l_suppkey	23	0.000213367	4	3
18663	l_linenumber	23	0.0998572	4	4
18663	l_quantity	701	0.00434997	8	5
18663	l_extendedprice	701	2.66427e-06	8	6
18663	l_discount	701	0.0247805	8	7
18663	l_tax	701	0.0321099	8	8
18663	l_returnflag	1042	0.307469	-1	9
18663	l_linestatus	1042	0.300911	-1	10
18663	l_shipdate	1082	8.94076e-05	4	11
18663	l_commitdate	1082	8.33926e-05	4	12
18663	l_receiptdate	1082	8.90733e-05	4	13
18663	l_shipinstruct	1042	0.100238	-1	14
18663	l_shipmode	1042	0.0451101	-1	15
18663	l_comment	1042	0	-1	16
-	-				

[...more...]

(572 rows)

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed"

database machines didn't take over the world

"Can just do it with a bunch of PCs"

cost argument, not covered here

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

History - SCAFS

SCAFS (Son of Content-Addressable File Store)

- processing unit in a 3.5" form factor, fit into a drive shelf
- communication via SCSI commands

Goals

- invisible to the application layer (i.e. hidden under SQL)
- established as an industry-standard for high volume market

Benefits

- 40% to 3x throughput improvement in a mixed workload
- 20% to 20x improvement in response time
- 2x to 20x for a "pure" decision support workload
- up to 100x improvement in response time

Parallel Data Laboratory Center for Automated Learning and Discovery

Lessons from CAFS [Anderson98]

Why did CAFS not become wildly popular?

- "synchronization was a big problem" *Answer* - Yes. Major concern for OLTP, less for "mining".
- "dynamic switching between applications is a problem"
 Answer Yes. But operating systems know how to do this.
- "not the most economical way to add CPU power"
 Answer but it is the best bandwidth/capacity/compute combo and you can still add CPU if that helps (and you can keep it fed)
- "CPU is a more flexible resource", disk processor wasted when not in use Answer - you're already wasting it today, silicon is everywhere
- "memory size is actually a bigger problem" *Answer* - use adaptive algorithms, apps have "sweet spots"
- "needed higher volume, lower cost function"
 Answer this is exactly what the drive vendors can provide no specialized, database-specific hardware necessary
- "could not get it to fit into the database world" Answer - that's why we're here

Objections to Active Disks for Database

"Performance benefits are too small"

• claim: parallelism just isn't there

"Functionality is too complicated for Active Disks"

"Too difficult to change existing code"

"This has been tried before, and didn't succeed"

database machines didn't take over the world

"Can just do it with a bunch of PCs"

cost argument, not covered here

Carnegie
MellonParallel Data LaboratoryCenter for Automated Learning and Discovery

Conclusions

Significant performance benefits

- for all three basic operations select, project, join
- 20% to 2.5x in prototype system
- extrapolate 40% to more than 10x in larger systems

Modification of database for Active Disks is feasible

- changed ~2% of the database code
- run ~5% of the total code at the drives
- six person-months effort

Additional benefits possible with on-disk functions

- code specialization
- integrated scheduling

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

ctive Disks

for Databases