

Active Disks - Remote Execution for Network-Attached Storage

Erik Riedel

Parallel Data Laboratory, Center for Automated Learning and Discovery Carnegie Mellon University www.pdl.cs.cmu.edu/Active

> UC-Berkeley Systems Seminar 8 October 1998

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks

for Applications

Outline

Network-Attached Storage

Opportunity

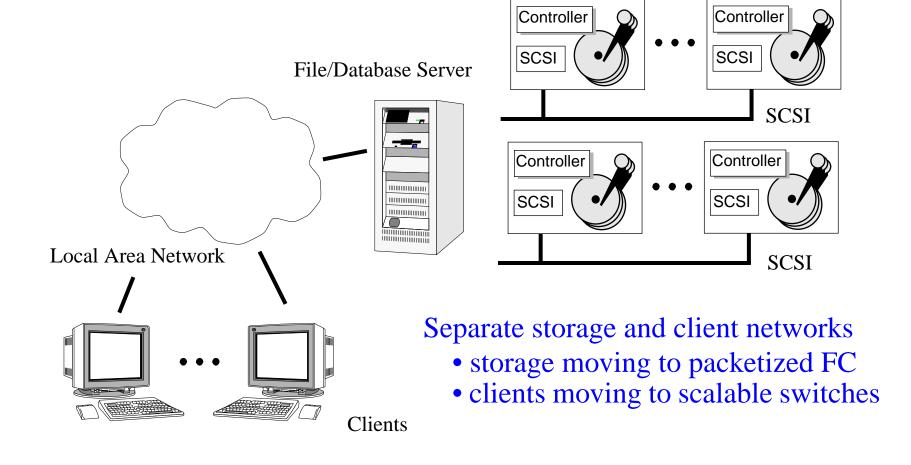
Active Disks

Applications

Performance Model

Prototype

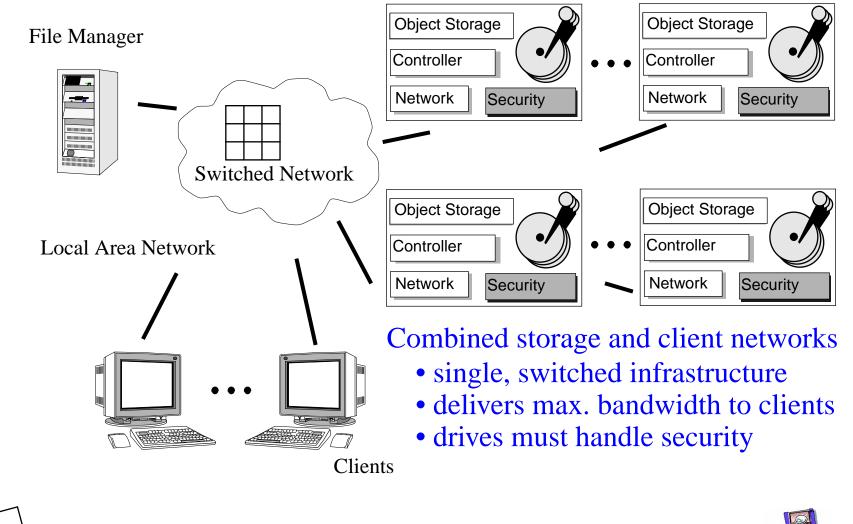
Summary

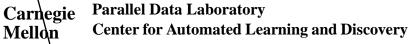

Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks for Applications

Today's Server-Attached Disks

Store-and-forward data copy through server machine

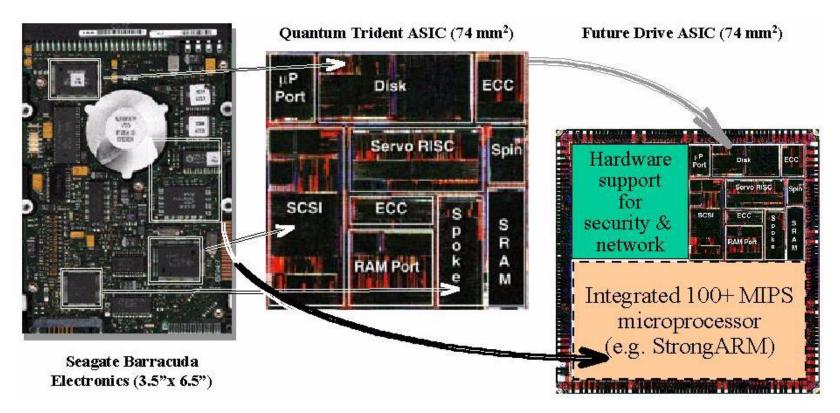




Active Disks for Applications

Network-Attached Secure Disks

Eliminate server bottleneck w/ network-attached



Active Disks for Applications

Excess Device Cycles Are Coming

Higher and higher levels of integration in drive electronics

- specialized drive chips combined into single ASIC
- technology trends push toward integrated control processor
- 100 MHz, 32-bit superscalar w/ 2 MB on-chip RAM in '98

Parallel Data Laboratory Carnegie **Center for Automated Learning and Discovery**

Active Disks

for Applications

http://www.pdl.cs.cmu.edu/Active

Melldn

Large database systems - lots of disks, lots of power

System	Process	Data Rate (MB/s)		
System	CPU	Disks	I/O Bus	Disks
Compaq Proliant TPC-C	4 x 200= 800	113 x 25= 2,825	133	1,130
Microsoft Terraserver	4 x 400= 1,600	<i>320</i> x 25= 8,000	532	3,200
Digital AlphaServer 500 TPC-C	1 x 500= 500	61 x 25=1,525	266	610
Digital AlphaServer 4100 TPC-D	4 x 466= 1,864	82 x 25= 2,050	532	820

- assume disk offers equivalent of 25 host MHz
- assume disk sustained data rate of 10 MB/s

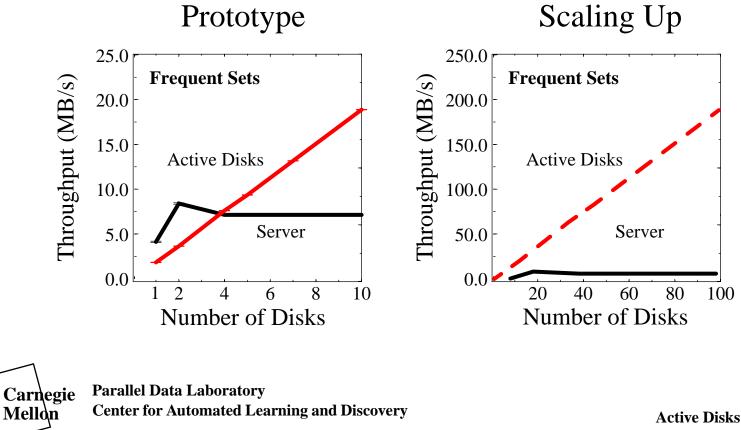
Lots more cycles and MB/s in disks than in host

Basic advantages of an Active Disks system

- parallel processing lots of disks
- **bandwidth reduction** filtering operations common
- scheduling little bit of computation can go a long way

Appropriate applications

- execution time dominated by data-intensive core
- allows parallel implementation of core
- small memory footprint
- small number of cycles per byte of data processed



Example Application

Data mining - association rules [Agrawal95]

- frequent sets summary counts
- count of 1-itemsets and 2-itemsets
- milk & bread => cheese
- diapers & beer

for Applications

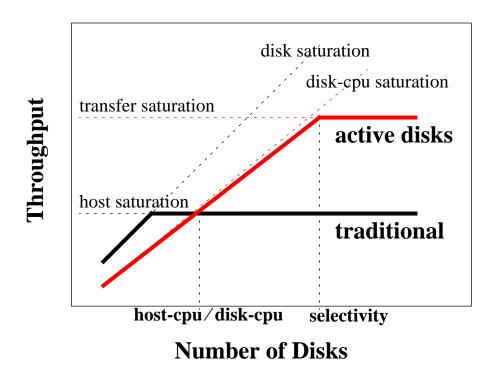
Execution = max(processing, transfer, disk access)

- selectivity is #bytes-input / #bytes-output
- assume fully overlapped pipeline (avoids Amdahl's law)

Processing time per byte

- Host: #cycles/byte/host-cpu-speed
- Disks: #cycles/byte/(disk-cpu-speed * #disks)

Transfer time per overall byte


- Host: 1 / interconnect-data-rate
- Disks: (1 / selectivity) / interconnect-data-rate

Disk access time per overall byte

• Both: 1/(disk-data-rate * #disks)

Scalable throughput

- **speedup** = (#disks)/(host-cpu-speed/disk-cpu-speed)
- (host-cpu/disk-cpu-speed) ~ 5 (two processor generations)
- **selectivity** = #bytes-input / #bytes-output

Additional Applications

Database - select

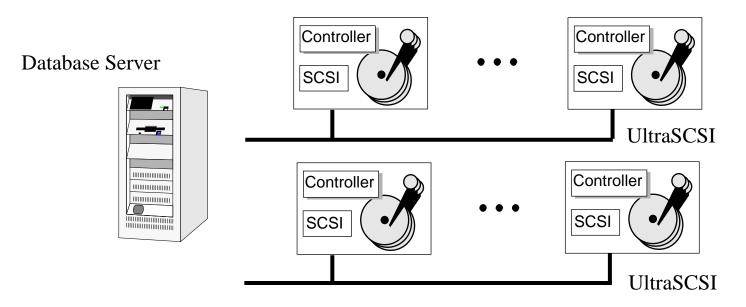
• extract records that match a particular predicate

Database - nearest neighbor search

- k records closest to input record
- with large number of attributes, reduces to scan

Multimedia - edge detection [Smith95]

• detect edges in an image


Multimedia - image registration [Welling97]

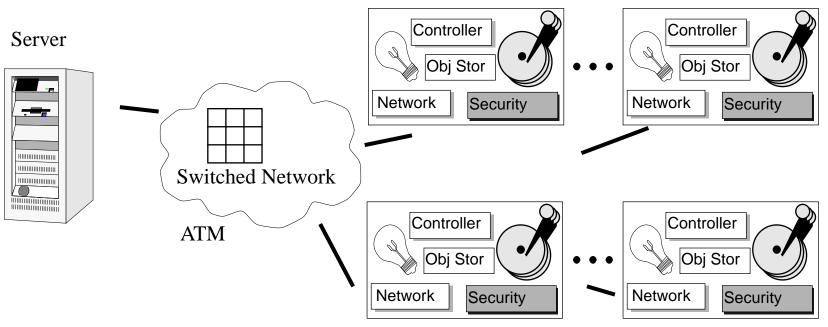
• find rotation and translation from reference image

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

Traditional Server

Digital AlphaServer 500/500

- 500 MHz, 256 MB memory
- disks Seagate Cheetah
- 4.5 GB, 10,000 RPM, 11.2 MB/s

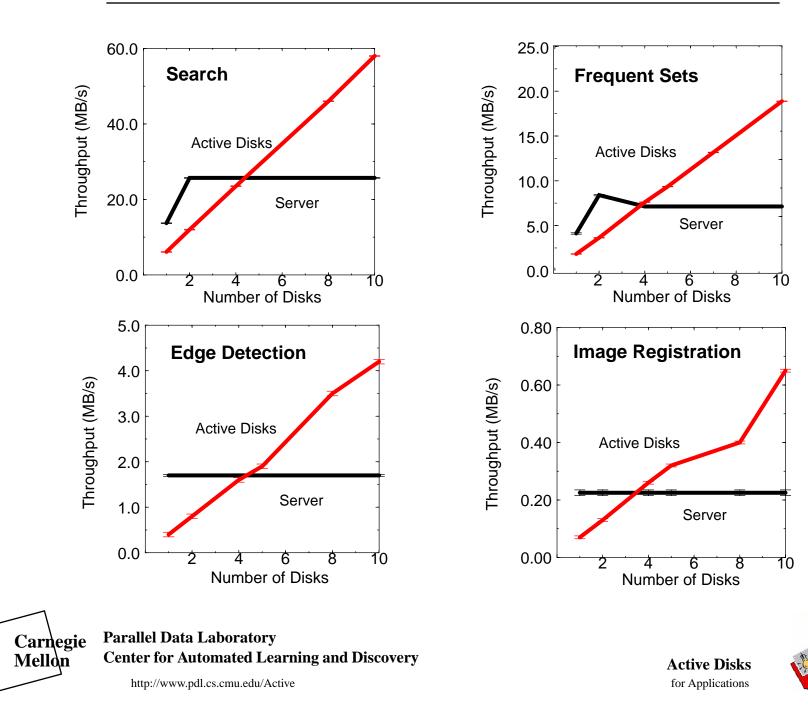

Carnegie Parallel Data Laboratory Mellon Center for Automated Learning and Discovery

Active Disks

for Applications

Server with Active Disks

Prototype Active Disks


- Digital AXP 3000/400 workstation
- 133 MHz, software NASD prototype
- Seagate Medallist disks

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

Active Disks

for Applications

Performance with Active Disks



Application Characteristics

Critical properties for Active Disk performance

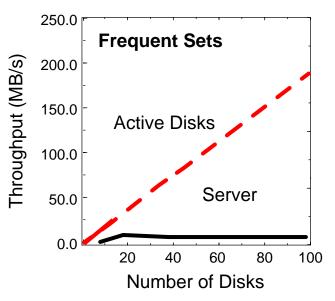
- cycles/byte => maximum throughput
- memory footprint
- selectivity => network bandwidth

application	input	computation (cycles/byte)	throughput (MB/s)	memory (KB)	selectivity (factor)	bandwidth (KB/s)
Select	m=1%	7	28.6	-	100	290
Search	k=10	7	28.6	72	80,500	0.4
Frequent Sets	s=0.25%	16	12.5	620	15,000	0.8
Edge Detection	t=75	303	0.67	1776	110	6.1
Image Registration	-	4740*	0.04	672	180	0.2
Select	m=20%	7	28.6	-	5	5,700
Frequent Sets	s=0.025%	16	12.5	2,000	14,000	0.9
Edge Detection	t=20	394	0.51	1750	3	170

http://www.pdl.cs.cmu.edu/Active

Active Disks for Applications

Technology trends provide the opportunity

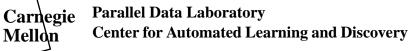

- "excess" cycles
- large systems => lots of disks => lots of power

Dramatic benefits possible

- application examples data mining and multimedia
- characteristics for big wins parallelism, selectivity
- *basic advantage* compute close to the data

Prototype

- speedup of 2x on 10 disks
- scales to 15x in 60 disk system
- bottleneck can be above 1000s of disks



Leverage for Active Disks

- powerful drive chips available now Siemens Tri-Core [announced March '98, first silicon Sept '98] Cirrus Logic 3CI [announced June '98]
- higher-level storage interfaces & security architecture NASD [Sigmetrics '97, ASPLOS '98]
 Object-oriented disks [Seagate and X3 T10], NSIC, SNIA
- aggressive applications data mining [Center for Automated Learning & Discovery]
 - multimedia [Informedia, Digital Libraries]

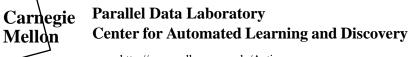
Challenges

- *programming model* partitioning, mobility, interfaces
- resources driven by cost, reliability, volume
- *management* disk come in boxes of ten
- additional application classes sort/join, storage management

Database Machines (CASSM, RAP, Gamma)

- higher disk bandwidth, parallelism
- general-purpose programmability

OS/Database Extensions


- application-specific specialization/extension (SPIN, VINO)
- data type extensions (Sybase, Informix)

Parallel Programming

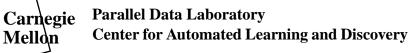
- automatic data parallelism (HPF), task parallelism (Fx)
- parallel I/O (Kotz, IBM, Intel)

Other "Smart" Disks

- offload SMP database functions, disk layout (Berkeley)
- select, sort, images via extended SCSI (Santa Barbara)

Why Isn't This Parallel Programming?

It is


- parallel cores
- distributed computation
- serial portion needs to be small

Disks are different

- must protect the data
- must continue to serve demand requests
- memory/CPU ratios driven by cost, reliability, volume
- come in boxes of ten
- advantage compute close to the data

Opportunistically use this power

• e.g. data mining possible on an OLTP system

Active Disks

for Applications