Active Storage For Large-Scale Data Mining and Multimedia

Erik Riedel Parallel Data Laboratory Carnegie Mellon University www.cs.cmu.edu/~riedel

CALD Seminar Center for Automated Learning and Discovery April 3, 1998

Parallel Data Laboratory

Carnegie Mellon

http://www.pdl.cs.cmu.edu

Outline

Network-Attached Disks

Industry Trends

Active Disks

Applications

Speedups

Ideal Application

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Today's Server-Attached Disks

Store-and-forward data copy through server machine

Network-Attached Secure Disks

Eliminate server bottleneck w/ network-attached

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Drive interface is changing

- Drive bandwidth now 15 MB/s and rising at 40% per year
- Disk-embedded, high-speed, packetized SCSI
- E.g. 100-1000 Mb/s Fibrechannel interconnect

Competition is increasingly based on code in the drive

- RAID support to off-load parity update
- Dynamic mapping underneath SCSI
- Increasingly sophisticated prefetching/caching
- Cost of managing storage 3-7x storage cost per year

On-drive cycles are available

- RISC core coming in integrated function drive ASIC
- Control processor not on critical path

Active Disks

for Data Mining

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Excess Device Cycles Are Coming

Higher and higher levels of integration in drive electronics

- specialized drive chips combined into single ASIC
- technology trends push toward integrated control processor
- 100 MHz, 32-bit superscalar w/ 2 MB on-chip RAM available in '98

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Opportunity

Sampling of large-scale database systems

Suctor	Process	Data Rate (MB/s)		
System	CPU	Disks	CPU	Disks
Compaq TPC-C	4x200= 800	<i>113</i> x25= 2,800	133	1,130
Microsoft Terraserver	4x400= 1,600	<i>320</i> x25= 8,000	532	3,200
Digital 500 TPC-C	1x500= 500	<i>61</i> x25= 1,525	266	610
Digital 4100 TPC-D	4x466= 1,864	<i>82</i> x25= 2,050	532	820

- assume disk offers equivalent of 25 host MHz
- assume disk sustained data rate of 10 MB/s

More cycles and MB/s in disks than in host

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Basic advantages of an Active Disks system

- parallel processing lots of disks
- bandwidth reduction filtering operations common
- scheduling little bit of computation can go a long way

Appropriate applications

- execution time dominated by data-intensive core
- allows parallel implementation of core
- small memory footprint
- small number of cycles per byte of data processed

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

for Data Mining

Execution = max(processing, transfer, disk access)

- selectivity is #bytes-input / #bytes-output
- assume fully overlapped pipeline (avoids Amdahl's law)

Processing time per byte

- Host: #cycles/byte/host-cpu-speed
- Disks: #cycles/byte/(disk-cpu-speed * #disks)

Transfer time per overall byte

- Host: 1 / interconnect-data-rate
- Disks: (1 / selectivity) / interconnect-data-rate

Disk access time per overall byte

• Both: 1/(disk-data-rate * #disks)

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

for Data Mining

Speedup

- (#disks*disk-cpu-speed) / host-cpu-speed [X<#disks<Z]
- > selectivity*(host-cpu/disk-cpu-speed) [#disks>Z]
- (host-cpu/disk-cpu-speed) ~ 5 per host cpu (2 generations)

for Data Mining

http://www.pdl.cs.cmu.edu

Carnegie Mellon

Traditional Server

Digital AlphaServer 500/500

- 500 MHz, 256 MB memory
- disks Seagate Cheetah
- 4.5 GB, 10,000 RPM, 11.2 MB/s

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Server with Active Disks

Prototype Active Disks

- Digital AXP 3000/400 workstation
- 133 MHz, software NASD prototype
- Seagate Medallist disks

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Data-Intensive Applications

Database - nearest neighbor search

- k records closest to input record
- with large number of attributes, reduces to scan

Data mining - association rules [Agrawal95]

• count of 1-itemsets and 2-itemsets

Multimedia - edge detection [Smith95]

• detect edges in an image

Multimedia - image registration [Welling97]

• find rotation and translation from reference image

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Performance with Active Disks

Application Characteristics

Critical properties for Active Disk success

- cycles/byte => maximum throughput
- memory footprint
- selectivity => network bandwidth

application	input	computation	throughput	memory	selectivity	bandwidth
••	•	(cycles/byte)	(IVIB/S)	(KB)	(factor)	(IVIB/S)
Select	m=1%	7	28.6	-	100	0.3
Search	k=10	17	11.8	0.6	100,000	0.0001
Frequent Sets	s=0.25%	15	13.3	220	14,000	0.001
Edge Detection	t=75	394	0.51	256	175	0.002
Image Registration	-	2387*	0.08	768	230	0.0003
Select	m=20%	7	28.6	-	5	5.7
Frequent Sets	s=0.025%	15	13.3	2,000	14,000	0.001
Edge Detection	t=20	394	0.51	256	3	0.2

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Scheduling/Batching Applications

Parallel Sample Sort

- computation at drives saves one full network transfer
- data goes to the "right" place sooner
- instead of exchanging data among client nodes

Step	Parallel Sample Sort	Sample Sort for Active Disks
1	Sample data	Sample data using sample() on drives
2	Create distribution histogram	Create distribution histogram
3	Read data into clients from local disks	Read data into clients using scan()
4	Distribute data among clients by histogram	
5	Sort locally at each client	Sort locally at each client
6	Write back to local disks in sorted order	Write back to drives in sorted order

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Executables downloaded into drives

• safe, secure, controllable, continuous media

Applications: schedule, semantic extension

• sort, join, collective I/O, video, web, storage mgmt

Compiler-assisted "Disklet" definition

• library, framework support, automatic partitioning

Active networking for storage

- NASD capabilities extended to network components
- in network: protocol conversion, caching, dynamic routing

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

