Active Disks For Large-Scale Data Mining and Multimedia

Erik Riedel Parallel Data Laboratory Carnegie Mellon University www.pdl.cs.cmu.edu/Active

NSIC/NASD Workshop June 8th, 1998

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Opportunity

Active Disks

Applications

Performance Model

Speedups in Prototype

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Active Disks

for Data Mining

Large database systems - lots of disks, lots of power

System	Process	Data Rate (MB/s)		
	CPU	Disks	I/O Bus	Disks
Compaq TPC-C	4 x 200= 800	<i>113</i> x 75= 8,475	133	1,130
Microsoft Terraserver	4 x 400= 1,600	<i>320</i> x 75= 24,000	532	3,200
Digital 500 TPC-C	1 x 500= 500	<u>61</u> x 75= 4,575	266	610
Digital 4100 TPC-D	4 x 466= 1,864	82 x 75= 6,150	532	820

- assume disk offers equivalent of 75 host MHz
- assume disk sustained data rate of 10 MB/s

Lots more cycles and MB/s in disks than in host

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

for Data Mining

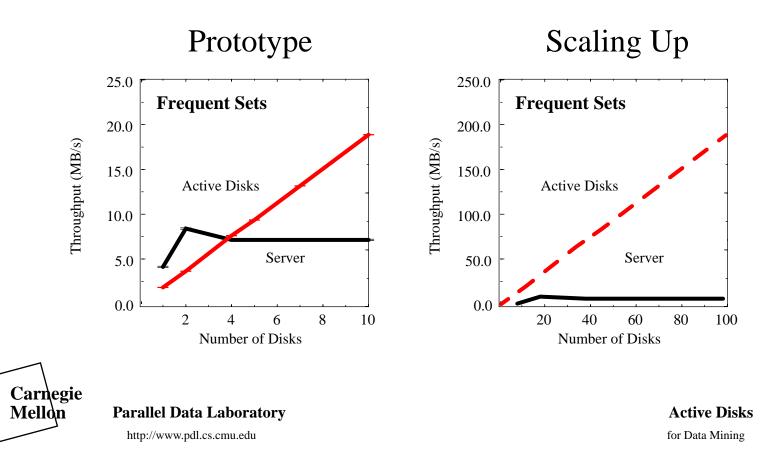
Basic advantages of an Active Disks system

- parallel processing lots of disks
- **bandwidth reduction** filtering operations common
- scheduling little bit of computation can go a long way

Appropriate applications

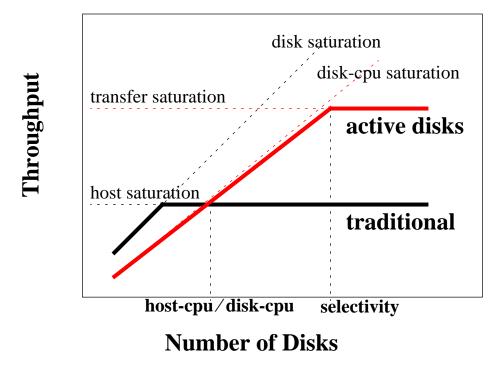
- execution time dominated by data-intensive core
- allows parallel implementation of core
- small memory footprint
- small number of cycles per byte of data processed

Parallel Data Laboratory http://www.pdl.cs.cmu.edu



Example Application

Data mining - association rules [Agrawal95]


- frequent sets summary counts
- count of 1-itemsets and 2-itemsets
- milk & bread => cheese
- diapers & beer

Scalable throughput

- speedup = (#disks)/(host-cpu-speed/disk-cpu-speed)
- (host-cpu/disk-cpu-speed) ~ 5 (two processor generations)
- **selectivity** = #bytes-input / #bytes-output

Active Disks

for Data Mining

Additional Applications

Database - select

• extract records that match a particular predicate

Database - nearest neighbor search

- k records closest to input record
- with large number of attributes, reduces to scan

Multimedia - edge detection [Smith95]

• detect edges in an image

Multimedia - image registration [Welling97]

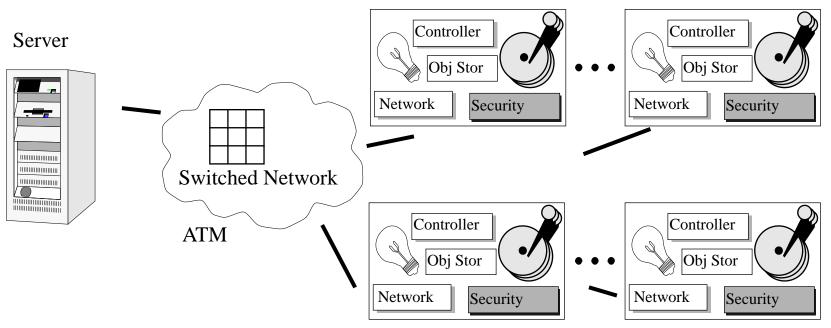

• find rotation and translation from reference image

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Traditional Server

Digital AlphaServer 500/500

- 500 MHz, 256 MB memory
- disks Seagate Cheetah
- 4.5 GB, 10,000 RPM, 11.2 MB/s



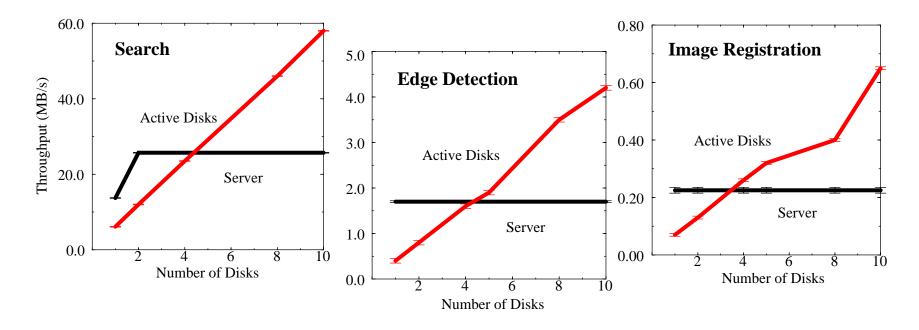
Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Server with Active Disks

Prototype Active Disks

- Digital AXP 3000/400 workstation
- 133 MHz, software NASD prototype
- Seagate Medallist disks


Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Performance with Active Disks

application	input	computation (inst/byte)	throughput (MB/s)	memory (KB)	selectivity (factor)	bandwidth (KB/s)
Select	m=1%	7	28.6	-	100	300
Search	k=10	7	28.6	72	80,500	0.1
Frequent Sets	s=0.25%	16	12.5	620	15,000	1
Edge Detection	t=75	303	0.67	1776	110	2
Image Registration	-	4740	0.04	672	150	2

Carnegie Mellon Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Why Isn't This Parallel Programming?

It is

- parallel cores
- distributed computation
- serial portion needs to be small

Disks are different

- must protect the data
- must continue to serve demand requests
- memory/CPU ratios driven by cost, reliability, volume
- come in boxes of ten

Opportunistically use this power

• e.g. data mining possible on an OLTP system

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Technology trends provide the opportunity

- "excess" cycles
- large systems => lots of disks => lots of power

Dramatic benefits possible

- data mining and multimedia
- parallelism, selectivity

Scales down as well as up

- about 4 disks match a single host processor (two VLSI generations)
- factors of 2-3 speedup with "PC" server and 10 disks

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

