Active Disks For Large-Scale Data Mining

Erik Riedel, Garth Gibson Parallel Data Laboratory

Andrew Moore, Christos Faloutsos Center for Automated Learning & Discovery

> Carnegie Mellon University www.pdl.cs.cmu.edu/Active

SIGMOD-DMKD '98 Workshop June 5, 1998

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Outline

Network-Attached Disks

Industry Trends

Active Disks

Applications

Speedups

25.0 **Frequent Sets** 20.0 Throughput (MB/s) 15.0 Active Disks 10.0 Server 5.0 0.0 2 6 10 4 8 Number of Disks

Prototype

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Increasing importance of Data Mining and Multimedia

- Large objects => many disks
- High processing rates => high storage bandwidth
- No legacy code => applications use stock file systems

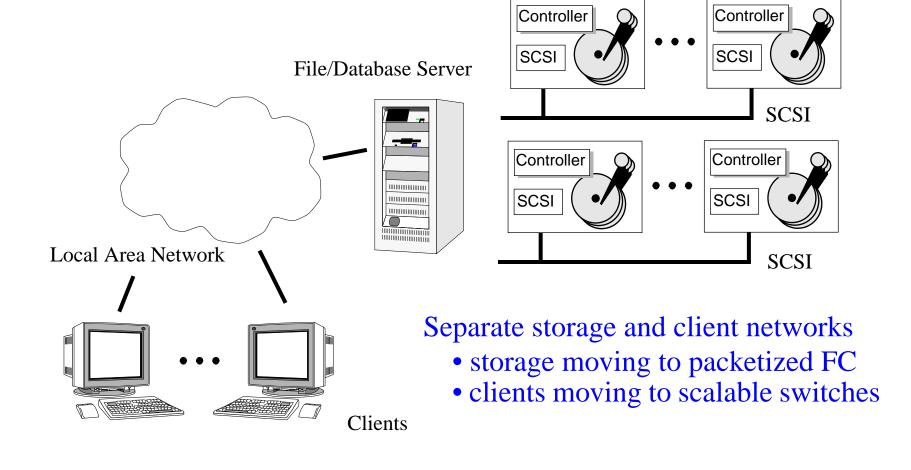
Collaboration

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

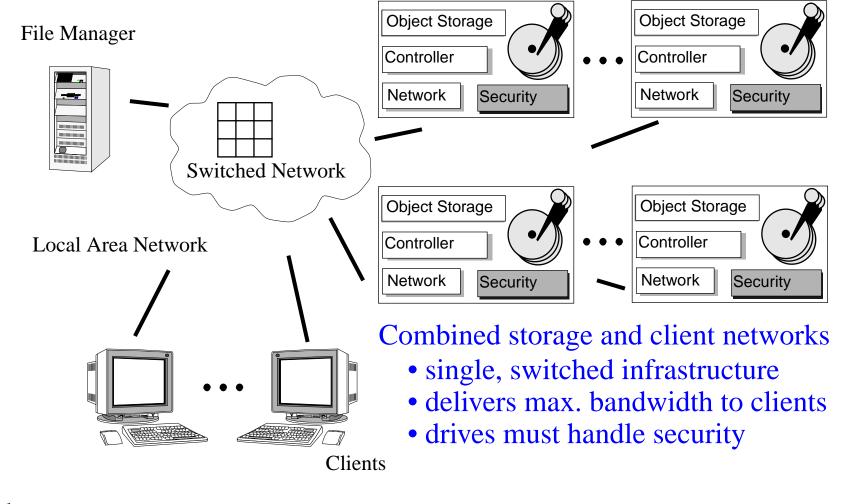
Carnegie Mellon

- Center for Automated Learning & Discovery (Mitchell, Feinberg, Eddy, ...)
- Multimedia Informedia/Digital Library (Wactlar, Reddy, Kanade, ...)



Today's Server-Attached Disks

Store-and-forward data copy through server machine



Network-Attached Secure Disks

Eliminate server bottleneck w/ network-attached

Parallel Data Laboratory

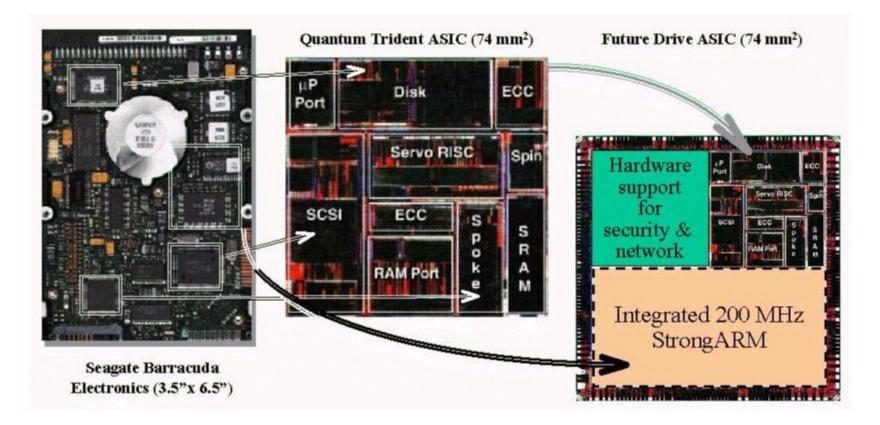
http://www.pdl.cs.cmu.edu

Working Group on Network-Attached Storage

National Storage Industry Consortium (NSIC)

- launched April 1996 (CMU, HP, IBM, StorageTek) www.nsic.org/nasd
- signed IP rights sharing agreement January 1997 CMU, HP, IBM, StorageTek, Seagate, Quantum
- participants execute independently funded research, share issues impacting NASD architecture/interfaces
- quarterly meetings
- public workshop with each meeting
- recent SNIA effort to reach larger community (www.snia.org)

Pre-standards recommendations


- Object-oriented disks (SCSI-4)
- Attributes for self-managed storage

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Excess Device Cycles Are Coming

Higher and higher levels of integration in drive electronics

- specialized drive chips combined into single ASIC
- technology trends push toward integrated control processor
- 75 MHz, 32-bit superscalar w/ 2 MB on-chip RAM available in '98

Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Technology Trends

Large database systems - lots of disks, lots of power

System	Process	Data Rate (MB/s)		
	CPU	Disks	I/O Bus	Disks
Compaq TPC-C	4 x 200= 800	113 x 75= 8,475	133	1,130
Microsoft Terraserver	4 x 400= 1,600	320 x 75= 24,000	532	3,200
Digital 500 TPC-C	1 x 500 =500	<mark>61</mark> x 75 =4,575	266	610
Digital 4100 TPC-D	4 x 466= 1,864	82 x 75 =6,150	532	820

- assume disk offers equivalent of 75 host MHz
- assume disk sustained data rate of 10 MB/s

Lots more cycles and MB/s in disks than in host

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

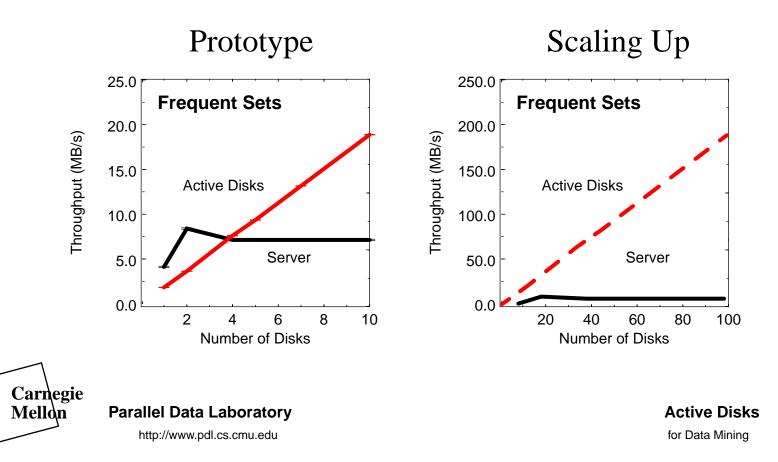
Basic advantages of an Active Disks system

- parallel processing lots of disks
- bandwidth reduction filtering operations common
- scheduling little bit of computation can go a long way

Appropriate applications

- execution time dominated by data-intensive core
- allows parallel implementation of core
- small memory footprint
- small number of cycles per byte of data processed

Parallel Data Laboratory http://www.pdl.cs.cmu.edu



for Data Mining

Example Application

Data mining - association rules [Agrawal95]

- frequent sets summary counts
- count of 1-itemsets and 2-itemsets
- milk & bread => cheese
- diapers & beer

Additional Applications

Database - select

• extract records that match a particular predicate

Database - nearest neighbor search

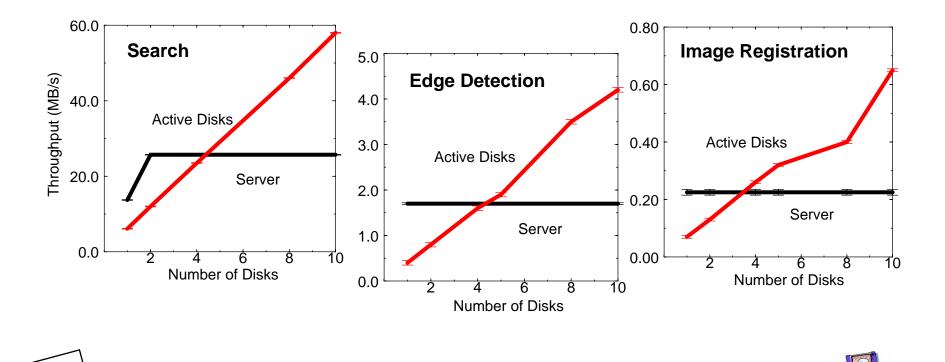
- k records closest to input record
- with large number of attributes, reduces to scan

Multimedia - edge detection [Smith95]

• detect edges in an image

Multimedia - image registration [Welling97]

• find rotation and translation from reference image



Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Performance with Active Disks

application	input	computation (inst/byte)	throughput (MB/s)	memory (KB)	selectivity (factor)	bandwidth (KB/s)
Select	m=1%	7	28.6	-	100	300
Search	k=10	7	28.6	72	80,500	0.1
Frequent Sets	s=0.25%	16	12.5	620	15,000	1
Edge Detection	t=75	303	0.67	1776	110	2
Image Registration	-	4740	0.04	672	150	2

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Carnegie Mellon

Executables downloaded into drives

• safe, secure, controllable

Applications: schedule, semantic extension

• sort, join, collective I/O, video, web, storage mgmt

Compiler-assisted "Disklet" definition

• library, framework support, automatic partitioning

Active networking for storage

- NASD capabilities extended to network components
- in network: protocol conversion, caching, dynamic routing

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

Scalable speedup for Data Mining and Multimedia

- parallel implementations exist
- small footprint, small cycles per byte, data-intensive

Storage industry is listening

- "free" computational power is coming soon
- NSIC/NASD pre-standards group hard at work

Scales down too

- about 4 disks match a host processor (2 VLSI generations)
- factors of 2-3 speedup with "PC" and 10 disks

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

NSIC/NASD June Meeting on Active Disks

June 8th, 1998 Morning: Application code in the disk

- 8:30 What to do with lots more computing in storage?, Garth Gibson, CMU
- 9:00 Put EVERYTHING in the Storage Device, Jim Gray, Microsoft Research
- 9:35 Active Disks for Data Mining and Multimedia, Erik Riedel, CMU
- 10:25 Intelligent Disks: A New Computing Infrastructure for Decision Support Databases, Kimberly Keeton, UC Berkeley
- 11:00 Active Disk Architectures for Rapidly Growing Datasets, Anurag Acharya, UC Santa Barbara
- 11:35 Panel Discussion

June 8th, 1998 Afternoon: Storage and file systems support in the disk

- 1:45 Consideration for smarter storage device, David Anderson, Seagate
- 2:20 SCSI Disk Requirements for Shared Disk File Systems, Matthew O'Keefe, Univ of Minnesota
- 3:15 NFS v4 and Compound Requests, Brent Callaghan, Sun Microsystems
- 3:50 A File system for Intelligent Disks, Randy Wang, UC Berkeley

4:25 Panel Discussion

June 9th, 1998 - Construct white paper outlining opportunities & challenges

Parallel Data Laboratory http://www.pdl.cs.cmu.edu

