

Active Storage For Large-Scale Data Mining and Multimedia

Erik Riedel Garth Gibson, Christos Faloutsos

Parallel Data Laboratory, Center for Automated Learning and Discovery Carnegie Mellon University www.pdl.cs.cmu.edu/Active

Carnegie Parallel Data Laboratory Mellon Center for Automated Learning and Discovery

Active Disks

for Data Mining

Outline

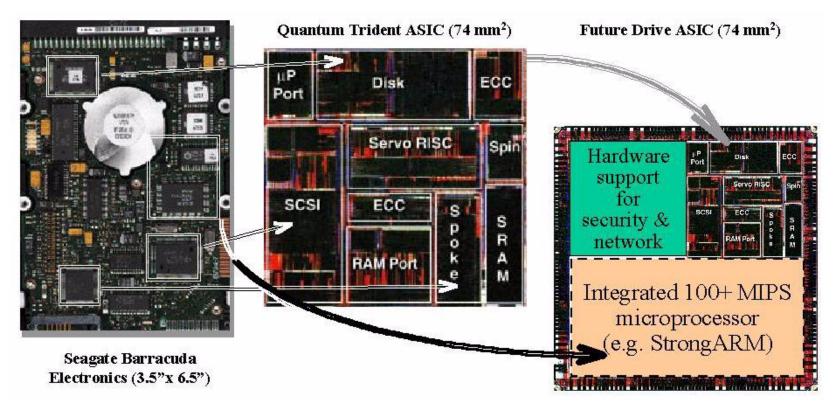
Opportunity

Active Disks

Applications

Performance Model

Prototype


Summary

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

Active Disks for Data Mining

Excess Device Cycles Are Coming

Higher and higher levels of integration in drive electronics

- specialized drive chips combined into single ASIC
- technology trends push toward integrated control processor
- 100 MHz, 32-bit superscalar w/ 2 MB on-chip RAM in '98

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Active Disks

for Data Mining

Large database systems - lots of disks, lots of power

System	Process	Data Rate (MB/s)		
System	CPU	Disks	I/O Bus	Disks
Compaq Proliant TPC-C	4 x 200= 800	113 x 25= 2,825	133	1,130
Microsoft Terraserver	4 x 400= 1,600	<i>320</i> x 25= 8,000	532	3,200
Digital AlphaServer 500 TPC-C	1 x 500= 500	<i>61</i> x 25=1 ,525	266	610
Digital AlphaServer 4100 TPC-D	4 x 466= 1,864	82 x 25= 2,050	532	820

- assume disk offers equivalent of 25 host MHz
- assume disk sustained data rate of 10 MB/s

Lots more cycles and MB/s in disks than in host

Active Disks

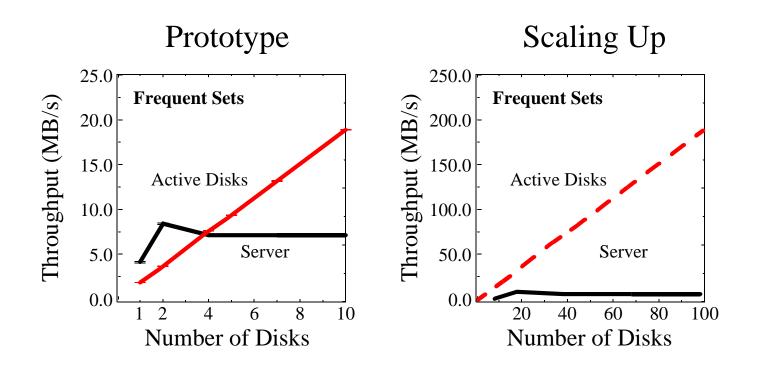
for Data Mining

Basic advantages of an Active Disks system

- parallel processing lots of disks
- bandwidth reduction filtering operations common
- scheduling little bit of computation can go a long way

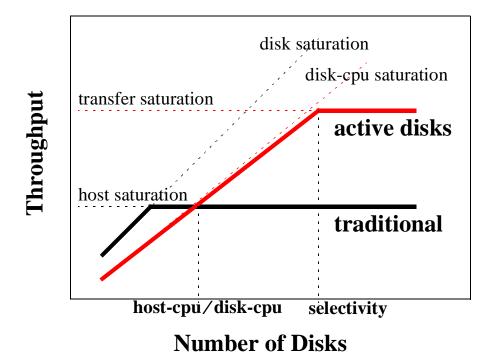
Appropriate applications

- execution time dominated by data-intensive core
- allows parallel implementation of core
- small memory footprint
- small number of cycles per byte of data processed



Example Application

Data mining - association rules [Agrawal95]


- frequent sets summary counts
- count of 1-itemsets and 2-itemsets
- milk & bread => cheese
- diapers & beer

Performance Model

Scalable throughput

- **speedup** = (#disks)/(host-cpu-speed/disk-cpu-speed)
- (host-cpu/disk-cpu-speed) ~ 5 (two processor generations)
- **selectivity** = #bytes-input / #bytes-output

Additional Applications

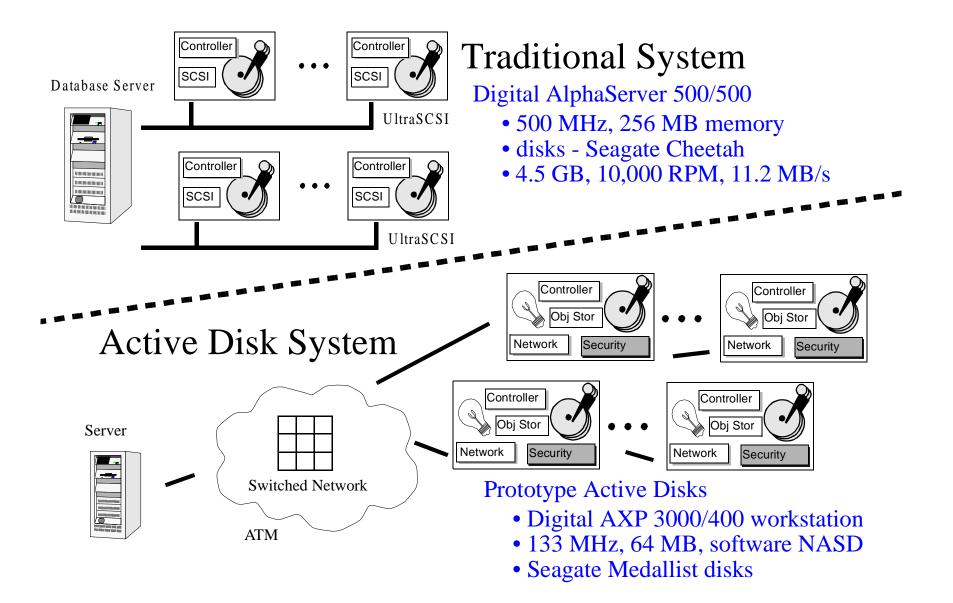
Database - select

• extract records that match a particular predicate **Database - nearest neighbor search**

- k records closest to input record
- with large number of attributes, reduces to scan

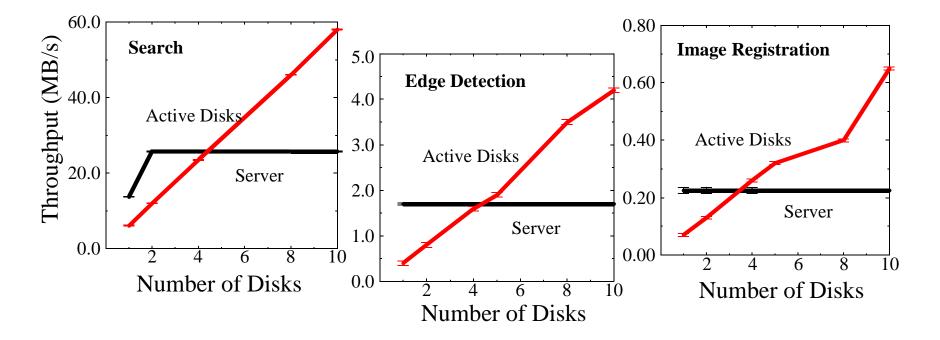
Multimedia - edge detection [Smith95]

• detect edges in an image


Multimedia - image registration [Welling97]

• find rotation and translation from reference image

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

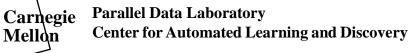


Prototype Comparison

Performance with Active Disks

application	input	computation (inst/byte)	throughput (MB/s)	memory (KB)	selectivity (factor)	bandwidth (KB/s)
Select	m=1%	7	28.6	-	100	300
Search	k=10	7	28.6	72	80,500	0.1
Frequent Sets	s=0.25%	16	12.5	620	15,000	1
Edge Detection	t=75	303	0.67	1776	110	2
Image Registration	-	4740	0.04	672	150	2

Technology trends provide the opportunity


- "excess" cycles
- large systems => lots of disks => lots of power

Dramatic benefits possible

- application examples data mining and multimedia
- characteristics for big wins parallelism, selectivity
- basic advantage compute close to the data

Challenges

- programming model partitioning, mobility, interfaces
- resources driven by cost, reliability, volume
- management disk come in boxes of ten
- additional application classes sort/join, storage mgmt

Backup/Extras

Active Disks for Data Mining

Aren't These Just Database Machines?

Database Machines of the 70s and 80s [Boral83]

- special-purpose
- not much disk parallelism
- primarily did scans

Today

- general purpose processing (silicon is cheap & available) (Siemens, Cirrus Logic, Lucent, TI, ...)
- higher disk bandwidth through parallelism (striping, RAID)

"networks" are the bottlenecks (SCSI, PCI)

• scans are much more popular

(data mining, multimedia, EOS)

Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

Database Machines (CASSM, RAP, Gamma)

- higher disk bandwidth, parallelism
- general-purpose programmability
- **OS/Database Extensions**
 - application-specific specialization/extension (SPIN, VINO)
 - data type extensions (Sybase, Informix)

Parallel Programming

- automatic data parallelism (HPF), task parallelism (Fx)
- parallel I/O (Kotz, IBM, Intel)

Other "Smart" Disks

- offload SMP database functions, disk layout (Berkeley)
- select, sort, images via extended SCSI (Santa Barbara)

Carnegie Mellon Parallel Data Laboratory Center for Automated Learning and Discovery

Why Isn't This Parallel Programming?

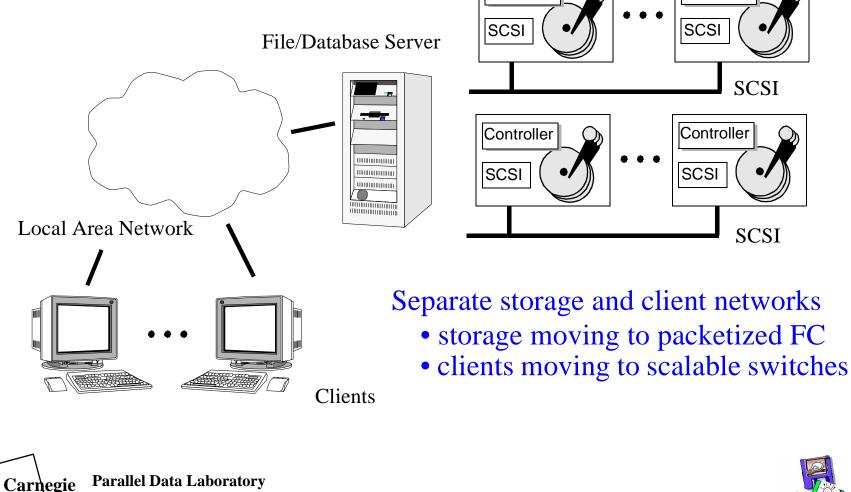
It is

- parallel cores
- distributed computation
- serial portion needs to be small

Disks are different

- must protect the data
- must continue to serve demand requests
- memory/CPU ratios driven by cost, reliability, volume
- come in boxes of ten
- advantage compute close to the data

Opportunistically use this power


• e.g. data mining possible on an OLTP system

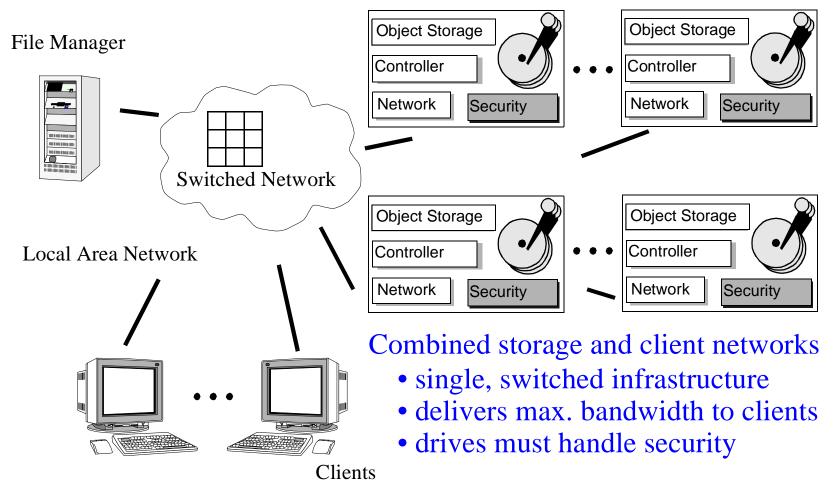
Carnegie
MellonParallel Data Laboratory
Center for Automated Learning and Discovery

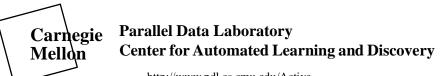
Store-and-forward data copy through server machine

Controller

http://www.pdl.cs.cmu.edu/Active

Mellon


Center for Automated Learning and Discovery


Controller

Network-Attached Secure Disks

Eliminate server bottleneck w/ network-attached

Active Disks

for Data Mining