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Introduction

l Trends
» processing power at storage is increasing
» bottlenecks are in other parts of the system

l Opportunity
» allow application-specific code to execute

inside storage devices
» use shipped functions at storage to offload

network and client/server work
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Outline

l Trends

l Opportunity

l Potential applications

l Experiment

l Mechanisms

l Conclusions & future work
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Trends

l Increased processing power on drives
» 100 MHz RISC core coming soon
» not involved in fastpath processing

– lots of idle cycles
– needs “value added” work to do

l System bottlenecks shifting
» drive throughput is not the major problem

– network utilization
– client/server processing
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Trends (2)

l Majority of aggregate CPU (and soon
memory?) in a system is at the disks

l Microsoft TerraServer
» 4-CPU AlphaServer 4100

– (4 x 400 = 1,600 MIPS)
– 2,048 MB RAM

» 320 disks (1.3 TB)
– (320 x 25 = 8,000 MIPS)

– (320 x 1 = 320 MB)

l Compaq ProLiant TPC-C
» Four 200 MHz Pentium Pros

– (4 x 200 = 800 MIPS)
– 4,096 MB RAM

» 113 disks (708 GB)
– (113 x 25 = 2,825 MIPS)

– (113 x 1 = 113 MB)

» largest part of system cost is the storage
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Opportunity

l Candidate applications
» can leverage the available parallelism

– highly concurrent workloads
– lots of drives compensate for lower relative MIPS

» are localized to small amounts of data
– process as data “streams past”

» have small code/cycle footprint per byte
» can use scheduling, management primitives

– enable a new range of storage functions
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Opportunity (2)

l Classes of applications
» filtering - search, association matching, sort

» batching - collective I/O

» real-time - video server

» storage management - backup, layout

» specialized support - locks, transactions

scheduling
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Applications - TIP Suite

l Reduce data transfer w/ “low” cost
» agrep - significant filtering

» xDataSlice - some filtering

» gnuld - expensive computation

» Sphinx - cpu intensive

» Postgres
– indexed join - poor locality w/o hints

– unindexed select - good filtering
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Applications - Database Select

» varying match percentage and drive MIPS1

– considers only
CPU cycles

l assumes
excess drive
bandwidth

l network link is
the bottleneck

– speedup vs. a
200 MIPS host

» when match% is low gains are possible
even with only 10 or 25 MIPS drives
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1Underlying numbers from [Franklin,
Jonsson, Kossman] in SIGMOD96
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Applications - sgrep Search

» varying drive MIPS and parallelism

– speedup vs. 200 MIPS host

Time for sgrep  search
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Experiment - SampleSort

l Two stage parallel sort
» sample data
» create distribution histogram
» distribute data to clients based on histogram
» sort locally at clients
» write back in sorted order

l Observation
» filter operation on key ranges
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Experiment - NasdSort

l Implementation on NASD prototype
» two simple functions “shipped” to drive

– sample()
l read() request that returns only a subset of the data

– scan()
l read() request that returns data for a specific key range

l buffers data from other ranges for later requests

» single master collects samples
» synchronization handled at the drives
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Experiment - NasdSort (2)

l Future extensions
» larger data sets

– add a merge phase at the end

» perform entire sort at drives
– more complex than scan() and sample()

– requires more cycles
– requires additional memory

» examine other sorting algorithms
– different scheduling characteristics
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Mechanisms

l Execution environment
» protect the drive and data

– against corruption/“leaks”

l Programming environment
» how to specify remote code

– how to “split” applications in the brave new world

l Resource management
» competition within the drive

– sector bandwidth, cache space, processor cycles
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Mechanisms (2)

l Execution environment
» compilation vs. translation vs. interpretation

Technology Per Program Per Invocation Per Statement
Cost Where Cost Where Cost Where

Compilation high drive none none
Pre-Compilation high producer none none
Sandboxing none high drive low drive
Interpreter none medium drive high drive
PCC high producer low drive none
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Mechanisms (3)

l Internal drive interface
Functionality Filter Video

Stream
Batching Manage

ment
Transact

ions
basic filesystem API X X X X X
stdin/stdout to requestor X X
asynchronous “callbacks” X X
long(ish)-term state ? X X ?
time/deadlines X X
real-time scheduler X
admission control ?
drive internals - query cache X X
internals - query layout X X
internals - control cache X
internals - control layout X
internals - control ordering ? X X ?
internals – “eavesdrop” requests X
initiate commands to 3rd parties ? ? ?
object locks/atomicity X
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Resource Management

l How to “control” the impact at drive
» limit functions to the cost of a “normal” op

– allow 2-3x the resources of a read() operation

» allow functions only during “idle” periods
– problematic in the presence of prefetching e.g.

» allocate a specific amount of resources to RE
– allocate that among all active functions

» TIP-like model cost/benefit
– minimize total application wait
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Network

Optimal Partitioning

» sector bandwidth
» cache memory

» processor cycles
» program memory

Drives
Clients/”Servers”

» processor cycles
» cache memory

» deadlines
» request “state”

» bandwidth
» number of messages

» congestion
» connection setup/teardown
» data integrity/protection
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Conclusions

l Significant “free” processing capability
available on storage devices

l Potential for improving performance
across a range of application classes

l Opportunity for value-add directly at
storage devices
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Future Work

l Resource management
» admission control for shipped functions

l Trusted environment
» pre-compilation for safety

l Storage management applications
l Additional domains

» data warehousing
» web servers
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Related Work

l Active technologies
» Active Networks (MIT), Liquid software

(Arizona), Postscript (Adobe)

l Database technologies
» Hybrid-shipping (Maryland), nowSort

(Berkeley), Parallel database systems,
Database machines, Channel programs
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Related Work (2)

l Extensible operating systems
» SPIN (Washington), exokernel (MIT), VINO

(Harvard), Scout (Arizona), Synthetix (OGI)

l Language technologies
» OmniWare (Berkeley/CMU), Toba (Arizona),

Javelin (Santa Barbara), Inferno (Bell Labs),
Proof-Carrying Code (CMU)

l Object Technologies
» CORBA, DataBlades (Sybase), DCOM


