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A. Datasets 
A.1. Datasets and models used in game-scraping 

application 

This section provides details on the datasets and models used 
in the production video-game-scraping workload described 
in §2. The images in each dataset represent the style of 
text that will appear in a particular portion of a game screen, 
which will be used in a downstream event detection pipeline. 

Dataset generation. The location and style of relevant 
text in a particular video game may differ from stream-to-
stream. To avoid the need to manually label streams, the 
game-scraping application generates synthetic datasets for 
training, validation, and testing. 

Specifically, the text that will appear in images for a par-
ticular dataset follows a predefined structure. For example, 
the text appearing in images of the V1 task is of the form 
“XY.Zk”, where X, Y, and Z each represent a digit 0 through 
9, and k is the string literal “k”. From these specifications, 
examples that match certain classes of a particular dataset 
can be generated. For example, V1 classifies the Z digit 
in the specification above, and might generate “67.8k” and 
“04.8k” as instances of this specification for class “8”. 

Once an instance of a specification has been constructed, an 
image containing this text is generated. In order to train a 
model that is robust to perturbations in text location, text 
font, and background color/texture, the generation process 
selects fonts, locations, and backgrounds for the generated 
image at random from a set of prespecified options. Fig-
ures 1–6 below show the effects of this randomization. 

We now provide details of each dataset used for this task in 
the paper. Example images chosen randomly from the vali-
dation sets of each dataset are displayed. We also describe 
the detailed architecture of the specialized CNNs employed 
for each dataset. For brevity, we use the following notation 
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to describe CNNs: CX is a 3 × 3 2D convolution with X out-
put channels and stride of 1, M is a 2D max pool with kernel 
size 3 × 3 and stride of 1, FX is a fully-connected layer with 
X output features. We use B as shorthand notation for C32 
→ C32 → C32. ReLUs follow each convolutional layer and 
all but the final fully-connected layer. 

Figure 1. Example images in the lol-gold1 dataset. 

V1: lol-gold1. 

• Game: League of Legends 
• Number of classes: 11 
• Image resolution: (22, 52) 
• Example: Figure 1 
• Model: C32 → M → B → M → C8 → M → F11 
• Description: Classifies the fractional value of a count 

of the amount of gold a player has accumulated (e.g., 
“7” in “14.7k”). Classes are digits 0 through 9 and 
“other” indicating that the section is blank. 

• Training images per class: 10000 
• Validation images per class: 100 
• Test images per class: 100 

Figure 2. Example images in the apex-count dataset. 

V2: apex-count. 

• Game: Apex Legends 
• Number of classes: 22 
• Image resolution: (19, 25) 
• Example: Figure 2 
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• Model: C32 → M → B → M → C8 → M → F22 
• Description: Classifies the number of members of a 

squad remaining. Classes are integers 0 through 20 
and “other” indicating that the section is blank. 

• Training images per class: 1000 
• Validation images per class: 100 
• Test images per class: 100 

Figure 3. Example images in the sot-coin dataset. 

V3: sot-coin. 

• Game: Sea of Thieves 
• Number of classes: 15 
• Image resolution: (17, 40) 
• Example: Figure 3 
• Model: C32 → M → B → M → C8 → M → F15 
• Description: Classifies the thousands-place of a count 

on the number of coins a player has (e.g., “10” for 
“10,438”). Classes are integers 0 through 14 and “other” 
indicating that the section is blank. 

• Training images per class: 800 
• Validation images per class: 200 
• Test images per class: 200 

Figure 4. Example images in the sot-time dataset. 

V4: sot-time. 

• Game: Sea of Thieves 
• Number of classes: 27 
• Image resolution: (22, 30) 
• Example: Figure 4 
• Model: C32 → M → B → M → B → M → C8 → M 
→ F27 

• Description: Classifies the time remaining. Classes 
are integers 0 through 25 and “other” indicating that 
the section is blank. 

• Training images per class: 2000 
• Validation images per class: 100 
• Test images per class: 100 

V5: lol-gold2. 

Figure 5. Example images in the lol-gold2 dataset. 

• Game: League of Legends 
• Number of classes: 111 
• Image resolution: (22, 52) 
• Example: Figure 5 
• Model: C32 → M → B → M → C8 → M → F111 
• Description: Classifies the integer value of a count of 

the amount of gold a player has accumulated (e.g., “14” 
in “14.7k”). Classes are digits 0 through 9, 00 through 
99, and “other” indicating that the section is blank. 

• Training images per class: 1000 
• Validation images per class: 100 
• Test images per class: 100 
• Note: This CNN is used only in §I 

Figure 6. Example images in the lol-time dataset. 

V6: lol-time. 

• Game: League of Legends 
• Number of classes: 62 
• Image resolution: (15, 35) 
• Example: Figure 6 
• Model: C32 → M → B → M → C8 → M → F62 
• Description: Classifies the minutes place of a timer 

(e.g., “30” in “30:54”). Classes are digits 00 through 
60 and “other” indicating that the section is blank. 

• Training images per class: 1000 
• Validation images per class: 100 
• Test images per class: 100 
• Note: This CNN is used only in §I 

A.2. Datasets and models used in NoScope 

We evaluate folding using four of the datasets from No-
Scope (Kang et al., 2017). Each task involves binary classi-
fication of whether an object of interest is present in a frame. 
As the overall videos provided contain millions of frames, 
we sample contiguous subsets of frames in the video to form 
training, validation, and testing sets. 

The CNNs used in evaluation follow those described in 
2 



Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size” 

the NoScope paper and source code. We next detail these 
architectures, as well as the splits of the dataset used in 
evaluation. 

N1: coral. 

• Object of interest: person 
• Model: C16 → C16 → M → F128 → F2 
• Total video duration: 11 hrs. 
• Dataset split: Split the video into eight contiguous 

chunks. Use chunk 6 as a training dataset, chunk 7 as 
a validation dataset, and chunk 8 as a testing dataset. 

N2: night. 

• Object of interest: car 
• Model: C16 → C16 → M → F128 → F2 
• Total video duration: 8.5 hrs. 
• Dataset split: Split the video into eight contiguous 

chunks. Use chunk 2 as a training dataset, chunk 3 as 
a validation dataset, and chunk 4 as a testing dataset. 

N3: roundabout. 

• Object of interest: car 
• Model: C32 → C32 → M → C64 → C64 → M → 

F32 → F2 
• Total video duration: 8.1 hrs. 
• Dataset split: Split the video into eight contiguous 

chunks. Use chunk 2 as a training dataset, chunk 3 as 
a validation dataset, and chunk 4 as a testing dataset. 

N4: taipei. 

• Object of interest: bus 
• Model: C64 → C64 → M → F32 → F2 
• Total video duration: 12 hrs. 
• Dataset split: Split the video into sixteen contiguous 

chunks. Use the chunk 1 as a training dataset, chunk 2 
as a validation dataset, and chunk 3 as a testing dataset. 

B. Example of Folding a Single Layer 
Table 1 shows an example of folding a convolutional layer 
from a specialized CNN used in the game-scraping work-
load. The memory traffic of the original layer is dominated 
by the input and output activations of the layer. Folding 
with f = 4 reduces memory traffic by nearly 2× while 
maintaining the same number of operations, enabling a 2× 
increase in arithmetic intensity. 

C. Folding for Group Convolutions 
In this section, we describe how folding is applied to group 
convolutions. 

Background on group convolutions. In a group convo-
lution, the input and output channels of the convolution 
are split into G groups. Each output channel in a partic-
ular group is computed via convolution over only those 
input channels in the corresponding group. This results in 
a G-fold decrease in operations and a G-fold decrease in 
the number of parameters in the convolutional layer. The 
resultant arithmetic intensity for a group convolution is thus: 

2NHWCoCiKH KW /G 
CiKH KW CoB(NHWCi + + NHWCo)G 

The arithmetic intensity of a group convolution in the batch-
limited regime (defined in §2.3) is determined as follows 
(recalling from §2.3 that calculating arithmetic intensity in 
the batch-limited regime involves removing the variable B): 

2NHWCoCiKH KW /G
A = 

CiKH KW CoNHWCi + G + NHWCo 

2CoCiKH KW 1 
lim A = ∗ 

N→∞ Ci + Co G 

Comparing this arithmetic intensity to that in Eqn. 4 of the 
main paper, the arithmetic intensity of a group convolution 
with G groups in the batch-limited regime is G× lower than 
a corresponding “vanilla” convolution. This makes group 
convolutions a promising target for increasing arithmetic 
intensity via folding. 

Applying folding to group convolutions. Folding group 
convolutions is straightforward. Similar to folding “vanilla” 
convolutions, a FoldedCNN for a group convolution with Ci 

input channels and Co output channels reduces batch size 
by√a factor of f and increases Ci and Co each by a factor 
of f×. This results in increasing the number of channels√ 
per group in the group convolution by a factor of f , and 
thus also increases arithmetic intensity in the batch-limited√ 
regime by a factor of f . 

Inference performance of folded group convolutions. 
We evaluate the throughput and utilization of folding on 
two group convolutions shown in Table 2. The two group 
convolutions are identical other than the number of total 
input and output channels, with G32 having 32 and G64 
having 64. Each setting uses 4 groups, leading to 8 and 16 
channels per group for G32 and G64, respectively. We com-
pare the throughput and utilization of these convolutions 
to the corresponding folded version with f = 4. Folding 
results in 64 input and output channels with 16 channels per 
group for G32, and 128 input and output channels with 32 
channels per group for G64. We use the same experimen-
tal setup described in §5 of the main paper for evaluating 
inference performance. 

With batch size of 1024, folding with f = 4 increase 
throughput and utilization of these grouped convolutions 
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Table 1. Example of increasing arithmetic intensity by folding a convolutional layer with f = 4. The layer has KH = KW = 3, H = 11, 
W = 26, and uses half precision (i.e., B = 2). 

Original Folded (f = 4) 
Equation Value Equation Value 

Batch size 
Input, output channels 

N 
Ci, Co 

1024 
32, 32 

N/f √ √ 
Ci f , Co f √ √ 

256 
64, 64 

Input and output elements (Eio) NHW Ci + NHW Co 18.74M f NHW Ci +f 
f N HW Cof 9.37M 

Layer elements (El) CiKH KW Co 0.01M fCiKH KW Co 0.04M 
Memory traffic in bytes (M ) B(Eio + El) 37.51M B(Eio + El) 18.82M 
Operations (O) 2NHW CoCiKH KW 5398.07M 2NHW CoCiKH KW 5398.07M 
Arithmetic intensity O/M 143.93 O/M 286.87 

Table 2. Group convolutions evaluated 
Name Ci Co G KH KW H W 
G32 
G64 

32 
64 

32 
64 

4 3 3 50 50 

by 1.74× for G32 and by 1.59× for G64 on a V100 GPU. 
Folding increases arithmetic intensity by nearly a factor of 
two for each convolution. The larger improvement for G32 
compared to G64 comes from the lower arithmetic intensity 
of G32; due to having half the number of input and out-
put channels of G64, G32 has half the arithmetic intensity. 
Thus, there is more room for improving the utilization of 
G32 by increasing arithmetic intensity alone via folding. 
These results show the effectiveness of folding on group 
convolutions. 

D. Folding for Winograd Convolutions 
FoldedCNNs can benefit a wide variety of convolutional 
implementations, such as direct convolutions, matrix-
multiplication-based convolutions, and Winograd convo-
lutions. In fact, our evaluation in §5 runs atop TensorRT, 
which selects among convolutional implementations, includ-
ing Winograd. To more clearly illustrate the performance 
of FoldedCNNs on Winograd convolutions, we also directly 
run FoldedCNNs using Winograd convolutions in cuDNN. 
Here, on the video scraping CNNs using the same exper-
imental setup described in §5, FoldedCNNs with f = 4 
provided a median speedup of 1.66× over the original CNN, 
matching the speedups in §5.3. 

E. Inference Performance on T4 GPU 
Figure 7 shows the throughput, FLOPs/sec, and arithmetic 
intensity achieved by FoldedCNNs and the original CNN 
on a T4 GPU (AWS g4dn.xlarge instance) in half-precision. 
The general trends are similar to those described in §5 of 
the main paper for the V100 GPU. 

F. Speedup with Varying Batch Size 
Figure 8 shows the throughput improvement when using 
FoldedCNNs with various values of f relative to the original 
CNN at varying batch sizes. As shown in the figure, the 
throughput improvement resulting from folding is largest at 
a batch size of 2048, and decreases with decreasing batch 
size. This behavior is expected, as decreasing batch size N 
decreases the likelihood that the inequality proved in §J will 
hold, and thus that folding will benefit. Folding is designed 
for improving high-throughput specialized CNN inference, 
in which large batch sizes are used. 

G. Accuracy-Throughput Tradeoff 
When reasoning about the potential tradeoff between accu-
racy and throughput/utilization present with FoldedCNNs, 
it is important to consider the usecases of specialized CNNs. 
As described in §2.1, it is common to use specialized CNNs 
as a lightweight filter in front of a large, general-purpose 
CNN. In such systems, most inputs are processed only by the 
specialized CNN, rather than by both the specialized CNN 
and the general-purpose CNN. Thus, the throughput of the 
specialized CNN typically dominates the total throughput 
of the system. 

Given the heavy use of the specialized CNN in this setup, 
improving the throughput of the specialized CNN at the ex-
pense passing more inputs to the general-purpose CNN may 
increase system throughput. For example, a FoldedCNN 
with f = 4 speeds up the N2 CNN by 2.50× with a 0.21% 
drop in accuracy. We show below that this FoldedCNN in-
creases system throughput unless the general-purpose CNN 
is over 285× slower than the N2 CNN. Thus, the improved 
utilization and throughput of specialized CNNs made pos-
sible by FoldedCNNs can compensate for reduced their 
accuracy to improve total system throughput. 

We now walk through this accuracy-throughput tradeoff via 
an abstract example. Figure 9 shows an abstract example of 
using a specialized CNN (e.g., those from NoScope) as a 
lightweight filter in front of a large, general-purpose CNN 
(e.g., ResNet-50). As depicted in the figure, all inputs pass 
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(a) NoScope specialized CNNs (b) Game-scraping specialized CNNs at a cloud-service provider 
Figure 7. Inference performance of FoldedCNNs relative to the original CNN. Arithmetic intensity is plotted in absolute numbers, and the 
dashed line shows the minimum arithmetic intensity required to reach peak FLOPs/sec on a T4 GPU. 

through the specialized CNN, which has a latency of Ts. 
The specialized CNN is unsure about u fraction of those 
inputs, and thus forwards the inputs to the general-purpose 
CNN, which has a latency of Tg . For the remaining (1 − u) 
fraction of inputs, the specialized CNN is sure of its answer, 
and returns the prediction directly. 

The expected latency for a given input to this system is thus: 

E[T ] = Ts + uTg 

Suppose that one replaced the specialized CNN used in such 
an application with a FoldedCNN that increases throughput 
by a factor of x, but decreases accuracy by a. Under the 
reasonable assumption that an increase in throughput leads 
to a corresponding decrease in latency, the latency of the 
FoldedCNN can be given as Ts . Furthermore, under the x 
assumption that all incorrectly classified inputs from the 
specialized CNN are forwarded to the general-purpose CNN 
(i.e., u is equivalent to the error of the specialized CNN), 
then the FoldedCNN lets u + a fraction of frames through 
to the general-purpose CNN. Thus, the expected latency for 
a given input to the system with a FoldedCNN is: 

Ts
E[T ] = + (u + a)Tg

x 

Clearly, for high values of x and small values a, the Folded-
CNN can result in improved total system throughput (recip-
rocal of latency). A secondary question of interest is: given 
specific values of x and a, for what values of Ts and Tg 

does the FoldedCNN increase overall system throughput? 

To answer this question, we focus on the ratio Tg . Intuitively, Ts 

the higher this ratio, the larger the effect of inaccuracy of the 
FoldedCNN on overall system throughput. We next calcu-
late the maximum value this ratio can be for a FoldedCNN 

5 

to improve overall system throughput: 

Ts
Ts + uTg > + (u + a)Tg

x 
Ts

Ts − > (u + a)Tg − uTg
x 
1 

Ts(1 − ) > aTg
x 

1 1 Tg
(1 − ) > 

a x Ts 

Consider the FoldedCNN with f = 4 for the N2 dataset 
described in §5.2 of the main paper. This FoldedCNN results 
in an increase in throughput of x = 2.5× and a decrease 
in accuracy of a = 0.0021. Plugging these values into the 
inequality above shows that this FoldedCNN will result in 
an overall improvement in system throughput so long as 
the general-purpose CNN is less than 285× slower than the 
original specialized CNN. If we consider ResNet-50 as an 
example of a general-purpose CNN, this is easily satisfied 
for the N2 CNN: ResNet-50 is 83× slower than the original 
specialized CNN. 

H. Effect of Tile Quantization on the 
Performance of FoldedCNNs 

In §5.2, we observed one case in which a FoldedCNN re-
sulted in a decrease in throughput and utilization compared 
to the original CNN: the N4 CNN using f = 4. After inves-
tigating the CNN, we found the cause to be due to GPU tile 
quantization: when the problem size does not divide evenly 
into a chosen tile size (i.e., the size of partitions of the over-
all kernel) (NVIDIA). NVIDIA’s deep learning libraries are 
best optimized for cases in which certain parameters of a 
convolutional layer, such as input and output channels, are 
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Figure 8. Speedup of FoldedCNNs with varying f at various batch 
sizes relative to the throughput of the original CNN at correspond-
ing batch sizes. 

divisible by large powers of two (e.g., divisible by 64 or 
128) (NVIDIA). Parameters that do not meet this require-
ment typically use kernels optimized for the next highest 
number divisible by a large power of two, resulting in a 
significant amount of wasted work. For more details on 
the inefficiency resulting from tile quantization, please see 
NVIDIA’s deep learning performance guide (NVIDIA). 

Many CNNs are already designed to have a number of input 
and output channels that are a power of two (e.g., many 
of the specialized CNNs have convolutional layers with 
32 input and output channels). However, FoldedCNN’s 
increase the number of input and output channels by a factor√ 
of f . For non-square values of f , such as 2 and 3, applying 
folding to such a layer may result in a number of input or 
output channels that is no longer a power of two or is no 
longer divisible by a power of two. For example, applying 
folding with f = 2 to a convolutional layer with 64 input 
and output channels will result in a convolutional layer with√ 
b64 2c = 90 channels. 

For the values of f considered in this work, we find that tile 

Input

Specialized CNN
General-Purpose CNN

unsure (u)

sure (1 - u)

latency = Ts latency = Tg

Figure 9. Abstract example of the use of a specialized CNN as a 
lightweight filter in front of a larger, general-purpose CNN. 

quantization primarily affects convolutions with a number 
of input and output channels greater than or equal to 64; we 
do not observe the negative effects often associated with tile 
quantization for convolutions with fewer channels, such as 
32 or 16. 

As shown in §A, the N4 CNN contains two convolu-
tions with 64 intermediate channels, followed by a fully-
connected layer with 32 output neurons. The FoldedCNN 
with f of 2 and 3 will thus lead to the negative effects of tile 
quantization for the convolutions in this CNN, but not for 
the fully-connected layer, which will receive the full benefits 
of folding. With f = 2, the benefit from folding does not 
outweigh the inefficiency due to tile quantization, resulting 
in a net decrease in utilization and throughput. In contrast, 
with f = 3, the benefits of folding outweigh the cost of 
tile quantization, resulting in an increase in utilization and 
throughput, albeit less pronounced than expected for f = 3. 

It is important to note that this case with decreased uti-
lization and throughput is not due to incorrectness of the 
transformations performed by FoldedCNNs. As shown in 
§5.2 of the main paper, FoldedCNNs with f of 2 and 3 for √ 
the N4 CNN result in the expected f× improvements in 
arithmetic intensity. Decreased inference performance in 
this case is due to lower levels of the system software (e.g., 
TensorRT, cuDNN), rather than the design of FoldedCNNs 
themselves. Other accelerators may not face the same issue. 

I. Evaluation on Small CNNs with many 
Classes 

In this section, we consider CNNs that have the same size 
as specialized CNNs, but which operate over many classes. 
We consider two new game-scraping tasks: a task with 111 
classes (V5), and one with 62 classes (V61). We use the 
same CNN as that used for V1. Table 3 shows that Folded-
CNNs exhibit larger drops in accuracy on these tasks due 

1For this CNN, we find that the small input resolution and large 
number of classes requires using more specially-tuned curriculum 
learning parameters. Specifically, when training a FoldedCNN 
with f = 4 on this dataset, we use I = 4, Δ = 3, and E = 120, 
and train the CNN for 3000 epochs. 
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Table 3. Performance of FoldedCNNs for CNNs with many classes. Differences in accuracy are listed in parentheses. 
Original Folded (f = 2) Folded (f = 3) Folded (f = 4) 

Model Resolution Classes Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup 
V5 (22, 52) 111 93.95 92.50 (-1.45) 1.12 90.78 (-3.17) 1.42 87.51 (-6.44) 1.75 
V6 (15, 35) 62 89.71 88.03 (-1.68) 1.08 85.48 (-4.23) 1.42 84.92 (-4.79) 1.71 

to the larger number of classes, but still increase utiliza-
tion/throughput by up to 1.75×. 

J. Proof of Reduction in Memory Traffic 
We will prove that the transformation described in §3 re-
duces total memory traffic if: 

(f − 1)CiKH KW Co
NHW > (1)1(1 − √ )(Ci + Co)f 

Recall that the arithmetic intensity of a convolutional layer 
as given by Eqn. 3 is: 

FLOPs 2NHWCoCiKH KW 
= 

Bytes B(NHWCi + CiKH KW Co + NHWCo) 

In §3, we create a new version of the layer in which we 
decrease NHW by a factor of f and increase both Ci and√ 
Co by a factor of f . We wish to show that this new layer 
has a higher arithmetic intensity than the original layer, 
provided that: 

(f − 1)CiKH KW Co
NHW > 1(1 − √ )(Ci + Co)f 

We will first show that the new layer performs an equal num-
ber of operations as the original layer (i.e., the numerator 
in Eqn. 3 stays the same) and then show that the new layer 
layer has reduced memory traffic compared to the original 
layer (i.e., the denominator in Eqn. 3 decreases), provided 
that the inequality holds. These two changes will result in 
the new layer having an increased arithmetic intensity. 

Equal number of operations. The initial con-
volutional layer performs 2NHWCoCiKH KW 

operations. The transformed convolutional layer√ √
2NHW performs ( fCo)( fCi)(KH KW ) = f 

2NHWCoCiKH KW operations, which is equal to 
that of the original model. 

Reduced memory traffic. We wish to show that the in-
equality is equivalent to the memory traffic of the trans-
formed layer being lower than that of the original layer. 

We first note that, ignoring the bytes per element B, 
the memory traffic of the original convolutional layer 

is NHWCi + CiKH KW Co + NHWCo, while that of√ 
fthe transformed layer is NHWCi + fCiKH KW Co +f√ 

f NHWCo.f 

We wish to show that: 

NHWCi + CiKH KW Co + NHWCo 
√ √ 
f f 

> NHWCi + fCiKH KW Co + NHWCo
f f 

We first rearrange the righthand side of the inequality as: 
√ √ 
f f 
NHWCi + fCiKH KW Co + NHWCo

f f 
NHW NHW 

= √ Ci + fCiKH KW Co + √ Co 
f f 

Grouping by similar terms gives: 

NHW NHW 
NHWCi − √ Ci + NHWCo − √ Co 

f f 

> fCiKH KW Co − CiKH KW Co 

Which implies: 

1 1 
(1 − √ )NHWCi + (1 − √ )NHWCo 

f f 

> (f − 1)CiKH KW Co 

Which implies: 

1 
NHW ((1 − √ )(Ci + Co))

f 

> (f − 1)CiKH KW Co 

Which ultimately leads to our desired inequality: 

(f − 1)CiKH KW Co
NHW > 1(1 − √ )(Ci + Co)f 
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