NASD: Network-Attached Secure Disks

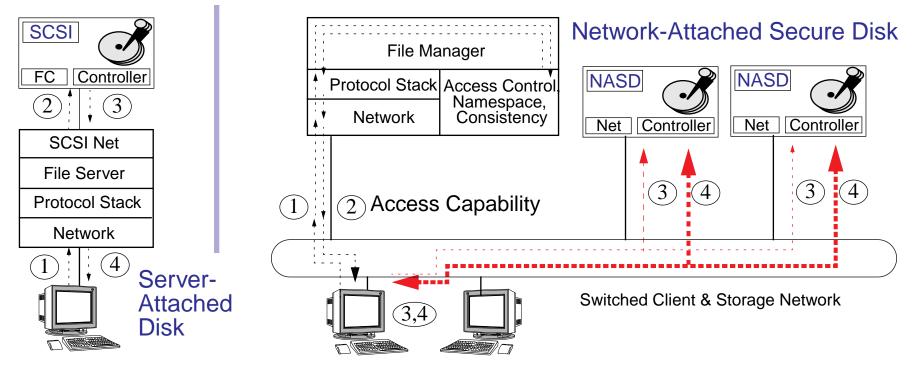
Garth Gibson

garth.gibson@cmu.edu

also David Nagle, Khalil Amiri, Jeff Butler, Howard Gobioff, Charles Hardin, Nat Lanza, Erik Riedel, David Rochberg, Chris Sabol, Marc Unangst, Jim Zelenka

a DARPA funded project of the Parallel Data Lab, 1995-1999

with support from: Seagate, HP, IBM, Intel, Quantum, Compaq, Infineon, Hitachi, Clariion, LSI Logic, 3Com, MTI, ProCom, EMC, Novell, Storage Tek


Carnegie Mellon Parallel Data Laboratory

NASD Evolves Storage Architecture

Store & forward Server-Attached Storage is SAD

CMU NASD research issues:

• interface definition, prototyping, porting file systems, affordable security, aggregation and sharing, industry participation

Carnegie Mellon Parallel Data Laboratory

Adapting Filesystems to NASD Storage

Primitives become drive responsibility

- data transfer and data layout
- attribute-based quality of storage specialization

Policy remains manager responsibility

- namespace navigation
- access control policy
- client cache management
- multi-access atomicity

CMU97-118 - interface definition Sigmetrics97 - scaling mgmt ASPLOS98 - scaling bandwidth ExtremeLinux99 - code release ISHPC99 - affordable security ICDCS00 - locking & RAID

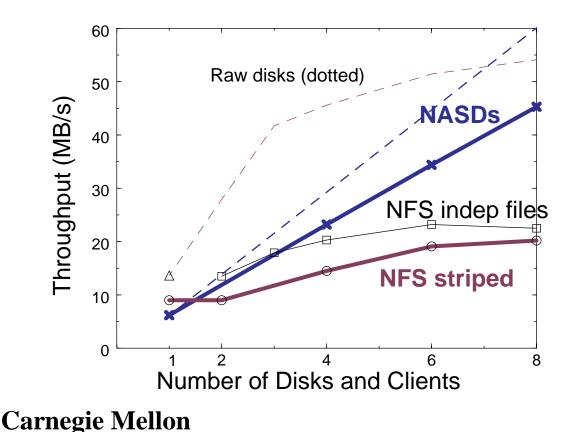
Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cs.cmu.edu

Scaling Manageability

Offloading work from the management to the workers

- drives perform layout, data transfer, command processing
- offload over 90% of manager load; managers support 10X scale
- concurrent device-to-device work: backup, XOR, migrate, restripe
- extensive, transparent, long-term self-monitoring


	Count in top 2% by work (thousd)	SAD		NetSCSI		NASD	
		Cycles (billions)	%of SAD	Cycles (billions)	%of SAD	Cycles (billions)	%of SAD
Attr Read	792.7	26.4	11.8%	26.4	11.8%	0.0	0.0%
Attr Write	10.0	0.6	0.3%	0.6	0.3%	0.6	0.3%
Block Read	803.2	70.4	31.6%	26.8	12.0%	0.0	0.0%
Block Write	228.4	43.2	19.4%	7.6	3.4%	0.0	0.0%
Dir Read	1577.2	79.1	35.5%	79.1	35.5%	0.0	0.0%
Dir RW	28.7	2.3	1.0%	2.3	1.0%	2.3	1.0%
Delete Write	7.0	0.9	0.4%	0.9	0.4%	0.9	0.4%
Open	95.2	0.0	0.0%	0.0	0.0%	12.2	5.5%
Total	3542.4	223.1	100.0%	143.9	64.5%	16.1	7.2%

• Berkeley NFS traces [Dahlin94] (230 clients, 6.6M reqs)

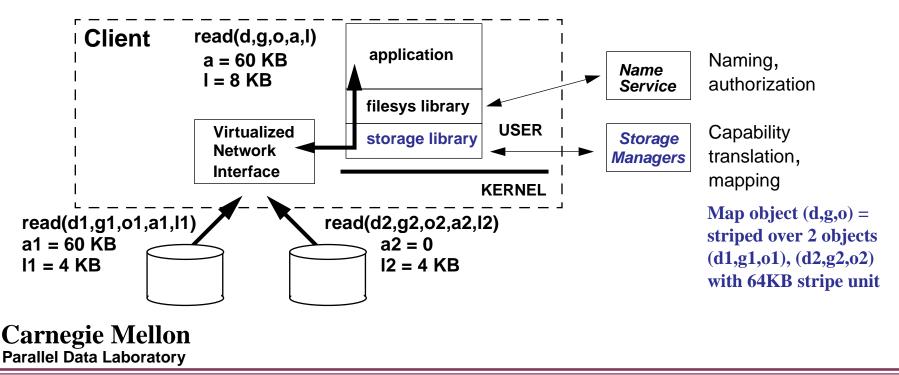
Scaling Bandwidth

NASD PFS aggregates deliver raw disks' bandwidth

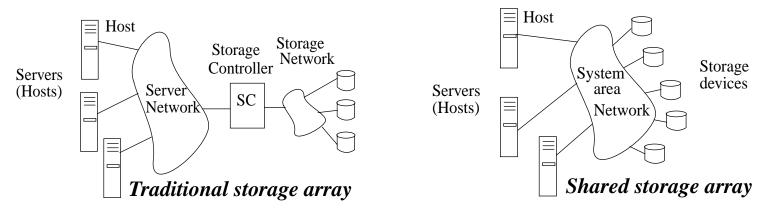
- Parallel association rule discovery experiment on 300 MB of sales records
- NASD-based middleware fetches 4 x 512KB blocks in parallel
- NFS server delivers 20% raw disk BW (60% net BW) @ 8 pairs

- 133Mhz NASDs
 6 MB/s drive's max
- 233Mhz clients
- MPI + SIO LLAPI
- switched OC3 ATM
- 500 Mhz NFS server 14 MB/s drive's max dual OC3 links

Parallel Data Laboratory


Minimize Operating System Interference

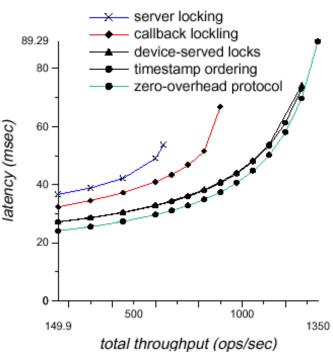
Synergy with user-level network access (Intel VIA)


- security (integrity) not dependent on OS assurances/checking
- NIC protocol processing leaves client to run application
- defines client-processed virtual volume interface

Asynchronous storage management oversight

- file (name) management of aggregate unaware of components
- first storage access installs maps in client for aggregate object

Multi-host Shared Storage Arrays

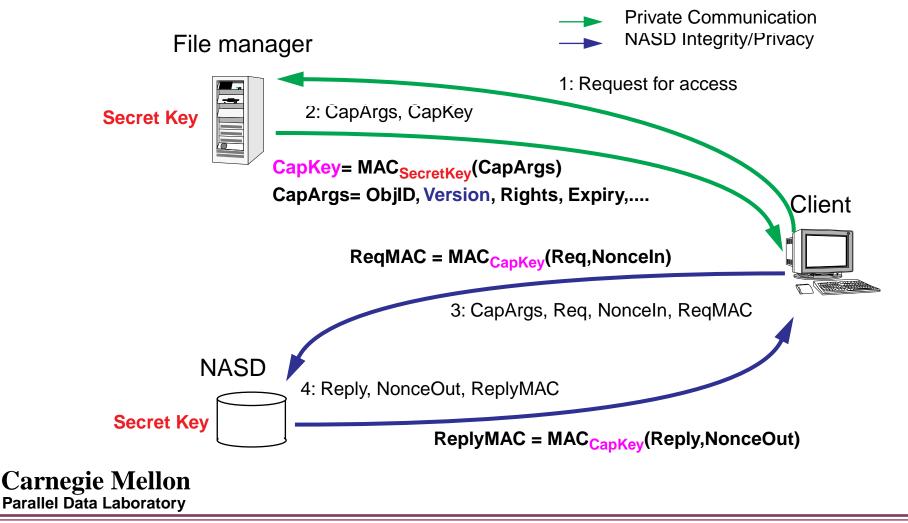

Serializability no longer easy

- not a panacea for reckless hosts
- databases do all serializability at host

Complex ordering uses locks

- central lock server
- callback, leased central lock server
- parallel, device-based locks
- device-based timestamp ordering

Device support effective



Carnegie Mellon Parallel Data Laboratory

NASD Security Enforcement Protocol Detail

Based on digital signatures (MAC); manager revocable

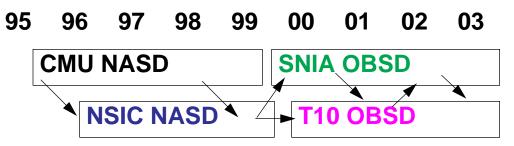
- client's key is derived from manager's key; cacheable at client
- NASD need not record any per-client long-term state

NASD Technology Transfer

CMU Network-Attached Secure Disk (NASD)

• founded NSIC NASD WG (CMU, IBM, HP, Seagate, Quantum, StorageTek)

NSIC Network-Attached Storage Devices (NASD)


• produced Object-Based Storage Device (OBSD) interface proposal

ANSI X3 T10 committee (storage interace standards)

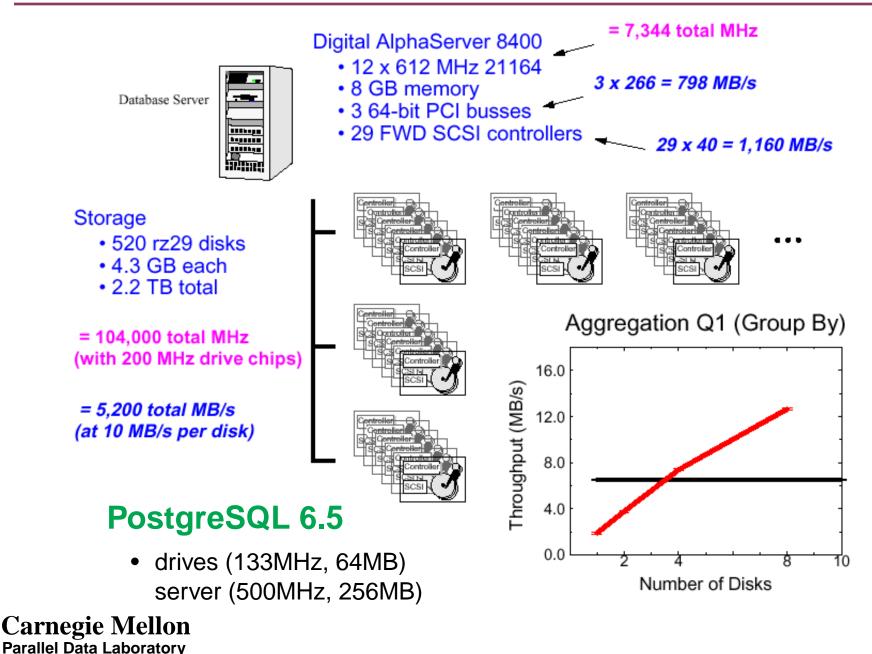
• 11/99 oversight board 17-0 for taking to plenary (IBM, Seagate, Quantum, Compaq, HP, SUN, DG, Adaptec, LSIL, ENDL, etc.); editor/chair volunteer

Storage Networking Industry Association

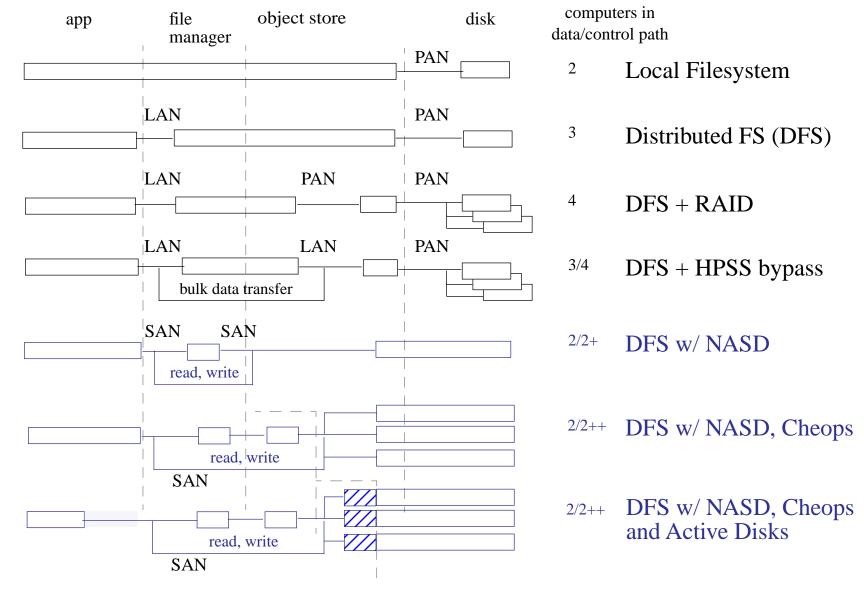
• 10/99 working group kickoff (IBM, Seagate, Quantum, Compaq, Adaptec, LSIL, STK, Auspex, PLC, Veritas, Fujitsu, Amdahl, Intel, 3Com, Gadzoox)

http://www.pdl.cs.cmu.edu

Object-Based Storage Devices (OBSD)


OLD: Sector-Based Storage Devices (SBSD)

- Fixed number of fixed-sized blocks (sectors)
- Naming represents physical allocation
- Format-time subdivision into set of contiguous-spaces (partitions)
- Access unit is one or more blocks
- Arbitrary accesses schedulable by host (queue tags)
- Physical zones differentiate peak bandwidth


NEW: Object-Based Storage Devices (OBSD)

- Variable number of variable sized blocks (objects)
- Naming implies no physical quality
- Anytime subdivision of objects into named sets (object groups)
- Access unit is arbitrary byte range
- Arbitrary accesses bound to specific Quality of Service (sessions)
- per-object tags for physical, logical, performance state (attributes)

NASD Followon Work: Active Disks

Storage Interface Evolution Taxonomy

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cs.cmu.edu