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Abstract:Abstract: A crucial issue in the design of very large disk arrays is the protection of data against
catastrophic disk failures. Although today single disks are highly reliable, when a disk array
consists of 100 or 1000 disks, the probability that at least one disk will fail within a day or a
week is high. In this paper, we address the problem of designing erasure-correcting binary
linear codes that protect against the loss of data caused by disk failures in large disk arrays. We
describe how such codes can be used to encode data in disk arrays, and give a simple method for
data reconstruction. We discuss important reliability and performance constraints of these
codes, and show how these constraints relate to properties of the parity check matrices of the
codes. In so doing, we transform code design problems into combinatorial problems. Using this
combinatorial framework, we present codes and prove they are optimal with respect to various
reliability and performance constraints.
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1. Background

In recent years, processing power has increased dramatically through advanced VLSI tech-

nology [Myers86, Gelsinger89] and parallel architectures [Bell85, Bell89]. As processing power

increases, so does the demand for increased Input/Output (I/O) performance. The mainstay of

on-line secondary storage, the magnetic disk, is providing neither the data rates required for

applications that process large amounts of sequential data nor the access rates required for appli-

cations that process large numbers of random accesses [Boral83]. This widening gap has led to

I/O systems that achieve performance through disk parallelism, using such techniques as disk

striping [Chen90, Kim87, Klietz88, Livny87, Salem86].
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Although disks have not been getting much faster, they have been getting significantly

smaller and cheaper. Disk densities have been growing exponentially, cost per megabyte has

been decreasing in step with density increases, and physical packaging has been achieving amaz-

ing reductions in volume [Hoagland89, Kryder89]. This trend has led some to explore the

replacement of individual large form-factor drives with many smaller form-factor drives [Jilke86,

Patterson88, Gibson92], giving yet another reason to expect that future I/O systems will contain

large numbers of disks.

While performance improves with increasing numbers of disks, the catch is that the chance

of data loss also increases. A simple model for device lifetime, used for electronics in general

and for magnetic disks in particular [Lin88, Gibson92], is an exponential random variable. In this

model the rate of failures in an I/O system is directly proportional to the number of disks; even

with disks 10 times as reliable as the best on the market today, the first unrecoverable failure in a

non-redundant array of a thousand disks can be expected in less than four months. Such high

rates of data loss encourage the inclusion of data redundancy to allow information to survive

hardware failures.

Today’s magnetic disk drives suffer from three primary types of failures. The first type,

transient or noise-related error, is corrected by repeating the offending operation or by applying

per sector error-correction facilities. The second type, media defects, are permanent errors and

are usually detected and masked at the factory. In this paper, we address the problem of design-

ing codes to protect against the third type of failure, catastrophic failures, which are head crashes

or failures of the read/write or controller electronics.

When a disk in an array experiences a head crash, the crash is detected by the controller

microprocessor. If a controller fails, the failure is detected by a host through violations of the

complex host/controller protocol. Thus, following a catastrophic disk failure, the bits on a failed

disk can be designated as ‘‘unreadable.’’ An unreadable bit is called an erasure. The codes we
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develop for disk arrays are ‘‘erasure-correcting’’ codes. Erasure-correcting codes differ from

error-correcting codes in that erasure-correcting codes are designed to recover erased bits in a

message word. The positions of the erased bits are known. In contrast, error-correcting codes are

designed to correct messages in which some of the bits may have been flipped, but the positions

of those bits are unknown. For example, parity is a single-erasure-correcting code, but it is not a

single-error-correcting code (though it is single-error-detecting). Since in the parity code, the

value of each bit is the parity of all the other bits, to correct a single erasure we can simply com-

pute the parity of all the unerased bits.

There are, of course, other possible causes of data loss in a disk array in addition to disk

drive failures. Examples include the failure of power, cabling, memory, and processors (see

[Gibson92, Gibson93] for discussions of the effect of these on RAID architecures), and incorrect

or misused software [Gray85]. Although the codes presented in this paper do not protect against

data loss from these causes, they do ensure that, as the number of disk drives per system grows,

catastrophic disk failures will not limit data reliability.

Figure 1 describes an estimate for the mean time to data loss (MTTDL) in single-erasure-

correcting I/O systems suffering catastrophic disk failures [Patterson88]. We can see that as the

number of disks soars, reliability plummets; even with single-erasure-correction, an I/O system

of more than a thousand disks is only a fraction as reliable as a single disk. A goal in designing

codes for these arrays is to make them at least as reliable as an individual disk.

The use of erasure-correcting codes in large disk arrays has also been studied by Rabin

[Rabin89], and the method he proposed for recovering lost data is similar to the one we present in

Section 5. However, he did not address the problem of designing codes particularly suited for use

in disk arrays. This problem is a primary focus of our paper.

We begin by discussing the properties that are desirable in a code for a large disk array. We

then present an introductory family of binary linear codes for correcting multiple erasures. We
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continue with a general discussion of the implementation of such codes in disk arrays. We show

that the problem of designing a good code can often be expressed in terms of a combinatorial

design problem. We present a number of codes and prove that they are optimal with respect to

our implementation metrics. Finally, we discuss our results and conclude with an indication of

future directions.

2. Metrics for Redundancy in Disk Arrays

There are many possible schemes for introducing redundancy into a disk array. To avoid

read performance penalties associated with decoding when there are no failures, we restrict our-

selves to schemes that leave the original data unmodified on some disks and define a redundant

encoding for that data on other disks. We call the former, information disks and the latter, check

disks. Calculations used to form the data on check disks are restricted to modulo 2 arithmetic;

that is, parity operations. This ensures that check data can be quickly and simply manipulated.

An equivalent way of expressing these restrictions is to say that we restrict ourselves to schemes

based on binary linear codes.

We view a disk as a stack of bits as shown in Figure 2. The j th bit from each disk forms

the j th codeword in the redundancy encoding. Reconstruction of lost data is logically one code-

word at a time, although in practice a block of codewords is processed in parallel. For simplicity

we will discuss only one of the codewords and refer to the disks as bits in this single codeword.

There are many metrics that can be used to assess the suitability of a coding scheme for use

in a large disk array. Because of the unreliability of a large non-redundant disk array induces our

need for redundancy, the mean time to data loss (MTTDL) is a primary metric for the choice of a

coding scheme. Associated with each coding scheme are three further important metrics: check

disk overhead, update penalty, and group size.

The check disk overhead for a coding scheme is the ratio of the number of check disks to

information disks.
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The update penalty of a coding scheme is the number of check disks whose contents must

be changed when a minimal change is made in the contents of a given information disk. One of

the advantages of large disk arrays lies in the concurrent processing of many random secondary

storage accesses. If a code requires N >1 check disks to be involved in every write, then the

available parallelism is reduced by up to a factor of N +1. Because parallelism is the reason we

want to use disk arrays, the number of disk accesses required to effect a small data update must

be minimized.

The set of disks that must be accessed during the reconstruction of a single failed disk form

a group. The group size is an important metric because the duration of reconstruction is likely to

scale linearly with the number of disks to be read. Additionally, in very large arrays, individual

disk failure will be frequent enough that highly available systems must continue operation during

repair and reconstruction [Muntz90, Holland92]. Until reconstruction is complete, the group size

indicates the number of disks that must be accessed to read or write an unreconstructed block on a

failed disk. Moreover, the group size also indicates the number of operational disks for which

user access performance is degraded by a reconstruction.

Finally, pragmatism requires that users be allowed to add new disks to their array. These

additional disks should be accommodated without a complete recalculation of all check data.

Such a recalculation would induce a huge strain on bandwidth and a large window of vulnerabil-

ity to unrecoverable failures each time an array is expanded.

3. A First Example: Parity in t Dimensions

To illustrate some of the metrics discussed in the previous section, we present a simple

example. One standard single-erasure-correction scheme is to divide up the information disks

into sets of G disks, and to associate a parity check disk with each of those sets. In Figure 3(a)

we show these G disks (for G = 4) in a row with their parity in the disk on the right side. This

coding scheme has an overhead of 1/G , an update penalty of 1 (since one check disk update is
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needed for every information disk update), and has a group size of G +1 (since G +1 disks are

involved in the reconstruction of any failure). Two failures in any one group leads to lost data.

The reliability of this scheme, which we call 1d-parity, is given in Figure 1.

A simple extension of 1d-parity, called 2d-parity, is shown in Figure 3(b) (for G=4). A set

of G 2 information disks are arranged in a two dimensional array. On one end of each row and

column a check disk stores parity for that row or column. Since a failed disk belongs to two

potential groups − its row and its column − it can be reconstructed from the data of either; thus,

2d-parity is double-erasure-correcting. This coding scheme has a check disk overhead of

2G /G 2 = 2/G , an update penalty of 2, and a group size of G +1.

The 2d-parity coding scheme extends to t -erasure correction by logically arranging G t

information disks in a t -dimensional array and recording parity on a disk at one end of each

dimensional group. A dimensional group is formed by fixing the coordinates in t −1 dimensions,

and allowing the remaining coordinate to vary. In these coding schemes each information disk

belongs to t groups, and the update penalty is t. These coding schemes have a check disk over-

head of t G (t −1)/G t = t /G , since there are t G (t −1) check disks and G t information disks. How-

ever, the group size remains G +1 because only G +1 disks are involved in the reconstruction of

any single failure. The t d-parity coding schemes are a member of the class of product codes that

have been commonly used in magnetic tape systems [Peterson72]. A common, but expensive,

technique for protecting disk systems from disk failures is known as shadowing [Bates89, Bit-

ton88]. A shadowing code is equivalent to a t d-parity code with G = 1 because the parity of a

single bit duplicates the value of that bit.

We do not envision practical disk arrays large enough to require t greater than 2 or 3,

because other sources of data loss limit the increase in data reliability and because of the perfor-

mance degradation associated with increasing numbers of check disk updates.
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Although t d-parity has an easily visualized structure, it is not necessarily the best coding

scheme for our metrics. In the next section, we discuss more general techniques for designing

schemes based on linear codes.

4. Use of Linear Codes for Large Disk Arrays

The codewords in a binary linear code can be viewed as vectors of information bits and

check bits. The check bits can be computed as the parity of subsets of information bits. Each

binary linear code can be defined in terms of a c x(k +c ) parity check matrix, H = [P | I ], where c

is the number of check bits, k is the number of information bits, I is the c xc identity matrix, and

P is a c xk matrix that determines the equations for the check bits. The codewords in the code

are the vectors X satisfying the equation HX = 0. In Figure 4 we show parity check matrices for

the 1d-parity and 2d-parity codes described in the previous section.

We can use the parity check matrix H = [P | I ] as the basis of a coding scheme for a large

disk array. The k columns of P represent the k information disks and the c columns of I

represent the c check disks. In our coding scheme, each row of H represents a group − the

columns that have 1’s in a row correspond to the disks in that group. Each group consists of a

check disk and the information disks whose parity it stores. In the following sections, when we

discuss properties of a ‘‘code,’’ we refer to the properties of the coding scheme based on the asso-

ciated parity check matrix H = [P | I ].

It is well known that any parity check matrix, H , has three equivalent properties expressed

in terms of a parameter, t , whose value is between 0 and c.

(1) H will allow any t errors (arbitrary changes in t disks’ values) to be detected.

(2) The minimum number of bits in which any two codewords differ, known as the distance of

the code, is at least t +1.
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(3) Any set of t columns selected from H will be linearly independent considered as vectors

over GF[2].

A fourth property, which concerns erasure correction (not error correction), is also known to

be equivalent.

(4) H will allow any t erasures to be corrected.

Note that a set of t binary vectors is linearly independent over GF[2] if and only if the vec-

tor sum, modulo 2, of those columns, or any nonempty subset of those columns, is not equal to

the zero vector. In fact, whether any set of disk failures can be repaired and reconstructed

depends on whether the corresponding set of columns in H is linearly independent (cf. Section 5).

The equivalence of t-erasure-correcting and t-error-detecting means that we could borrow any

code used in memory systems; however, many of these codes are not suitable for disk arrays

because they have large update penalties.

Three of our metrics from Section 2 are easily expressed in terms of parity check matrices.

The check disk overhead is c /k , the ratio of the number of rows in P to the number of columns in

P. The size of a group, which determines performance degradation during reconstruction of a sin-

gle disk, is the weight of the row for that group (i.e. the number of 1’s in that row). The update

penalty for any information disk, which is the number of groups including that disk, is the weight

of its column.

A nice property of linear codes is that extending an array with new information disks can be

done without performance penalty. If a new disk’s contents are all zeros, then adding it to a

group will not change the parity of that group. This means that a new column can be added to P

when a new, zeroed disk is brought on-line, and no recalculation of check disks is required. In

practice the columns of P are constrained by the properties of H we mentioned above; when an

I/O system is first installed, the matrix P should be picked with many more columns than are

needed, and the extra columns should be reserved until new disks are installed.
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Unfortunately, our measure of reliability, the mean time to data loss, MTTDL , is not easily

calculated from the parity check matrix. It depends on the way disks fail and are repaired. For

our calculations, we assume that disk lifetimes are identical independent exponential random

variables [Gibson92] and that repair is done periodically. With this model we can estimate

MTTDL as the expected number of repair periods until an unrecoverable set of failures occur.

Although a t-erasure-correcting code certainly recovers all t or fewer failed disks, it will also be

able to recover some of the larger sets of failures. We use Monte Carlo simulation [Rubin-

stein81] on subsets of columns from H to estimate the probability that any particular size subset

is unrecoverable. In Section 8, we apply this technique to evaluate the mean time to data loss for

the t d-parity codes and to the codes introduced in Section 6.

5. Implementing Reconstruction

Recall that HX = 0 is satisfied when no disk has failed and X is a vector containing a bit

from each disk. If m disks fail then the columns of H and the entries of X are divided into two

types: those that do and those that do not represent disks that have failed. If we rearrange the

columns of H and the entries of X so that the failures are on the right and the functional disks are

on the left, then H = [A | B ] and X = [d | y ]. The lost data are the m entries of y , and the columns

of H representing these disks are in B. We must determine the value of y such that

HX = Ad +By = 0 (addition mod 2). This means that we must try and solve the c equations in m

unknowns described by Ad = − By = By. The failures are recoverable if and only if there is a

unique solution to this system of equations, that is, if and only if the columns of B are linearly

independent. This proves the fact stated in Section 4 that a code is t -erasure-correcting if and

only if every set of t columns of H is linearly independent.

To solve the system Ad = By , we could first compute the product Ad , yielding a vector q ,

and then solve the system q = By . Unfortunately, because today’s disks contain billions of bits,

this method computes q then solves q = By billions of times. It is better to spend additional time
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performing initial matrix computations on A and B (which are parts of the parity check matrix H

stored locally) if this will reduce the cost of the computations to be done billions of times.

We therefore propose the following method of solving the system Ad = By . Because the m

columns of B are linearly independent if and only if there is a set of m rows from B that is

linearly independent, we first attempt to find m linearly independent rows of B (using a standard

technique such as Gaussian elimination). If this attempt fails, the failed disks cannot be recon-

structed. Otherwise, if m linearly independent rows are found, let B ′ be the matrix consisting of

these rows, and let A′ be the corresponding rows of A . The solution to the system Ad = By is the

same as the solution to the system A′d = B ′y . To solve the system A′d = B ′y , we first compute

(B ′)−1 (by some standard technique) and then the product (B ′)−1A′ . This determines the operation

that must be performed once for each codeword, X = [d | y ], to correct exactly one of the billions

of bits on each of the lost disks; that is, one codeword of the failed disks’ data is reconstructed by

y = (B ′)−1A′d .

Note that to compute y we only need to access those disks corresponding to non-zero

columns of (B ′)−1A′ . Because (B ′)−1 is of full rank, a column of (B ′)−1A′ is non-zero if and only

if the corresponding column of A′ is non-zero. Therefore, where there are multiple ways to select

B ′ from B , this selection should be done to minimize the number of non-zero columns in the

corresponding matrix, A ′. We leave for further research the development of such specialized

methods.

In the case of a single failure, B ′ will consist of a single row from B . This means that the

set of disks involved in reconstructing a single disk will correspond to a row of H ; thus, group

size is determined by the weight of the rows in H , as claimed in Section 4.

The above method for failure correction can be implemented in software that runs in the

host or an I/O processor. This processor may need some hardware support for fast exclusive OR

on blocks of data, but can otherwise be a traditional microprocessor. Software learns of failures
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directly from disk controllers or by lack of response from disk controllers. This identifies the

variables A , B , d and y , where d and y are placeholders for each of the billions of codewords.

Using these values, software can compute the matrix (B ′)−1A ′, or determine that the lost data

cannot be reconstructed.

The functional disks corresponding to non-zero columns of (B ′)−1A ′ are accessed by read-

ing them in parallel, large blocks at a time. The reconstructed data is then computed and written

either to repaired or replaced disks.

Any set of t or fewer columns from the parity check matrix of a t -erasure-correcting code is

linearly independent, so all sets of m less than or equal to t failures are recoverable. Moreover, if

m is greater than t , then some, but not all, sets of failures are recoverable. A set of m > t failures

is recoverable if and only if the columns corresponding to the failed disks are linearly indepen-

dent. The successful recovery of such sets of failures is important to a high MTTDL. For more

failures than check disks, (m > c ), there is never a way to reconstruct all lost data.

6. Double-Erasure-Correcting and Triple-Erasure-Correcting Codes

Because the update penalty is the dominant performance cost in our redundant disk array,

we restrict our attention to codes that minimize it. Since any code that corrects t erasures must

leave evidence of every write on at least t different check disks, its minimum update penalty is t.

Thus, in designing good t-erasure-correcting codes, we demand that the column corresponding to

each information disk have weight exactly t. The t d-parity code described in Section 3 has this

property.

Within the class of 2-erasure-correcting and 3-erasure-correcting codes with minimum

update penalty (the information columns of H have weight 2 or 3, respectively) we present, in

Subsections 6.1 and 6.2, 2-erasure-correcting and 3-erasure-correcting codes that are designed to

achieve low check disk overhead and high reliability. We also prove optimality results concern-

ing these codes. Example parity check matrices for these codes are found in Figures 5 and 6.
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6.1 Codes with Optimal Check Disk Overhead

We begin by presenting a 2-erasure-correcting code called the full-2 code, and a 3-erasure-

correcting code called the full-3 code. We then argue that these codes achieve the optimal check

disk overhead possible among codes in their class.

Definition: The full-2 code is a 2-erasure-correcting code. It is defined by the parity check matrix

Hf ull 2 = [Pf ull 2 | I ], where Pf ull 2 consists of all possible distinct columns of weight two.

The full-2 code is 2-erasure-correcting because each column of its parity check matrix is

non-zero, and the sum of any two columns is also non-zero (because the columns are all distinct).

The check disk overhead of the full-2 code is c /(2
c) = 2/(c −1), where c is the number of check

bits,5 because the number of distinct columns of weight two is (2
c).

Definition: The full-3 code is a 3-erasure-correcting code with parity check matrix

Hf ull 3 = [Pf ull 3 | I ], where Pf ull 3 consists of all possible distinct columns of weight three.

To verify that the full-3 code is indeed 3-erasure correcting, note that the sum of any two

columns of its parity check matrix is a non-zero column of even weight, and therefore the sum of

any three columns cannot be the zero vector. The check disk overhead of the full-3 code is

c /(3
c) = 6/((c −1)(c −2)), where c is the number of check bits.

If a code corrects all sets of 2-erasures, then all the columns of its parity check matrix must

be distinct. In a 2-erasure-correcting code with minimum update penalty, the columns of its par-

ity check matrix that are associated with information bits must all have weight two. It follows

that the full-2 code protects the maximum number of information disks for a given number of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 We generally express a code’s check disk overhead in terms of the number of check disks, c , be-
cause our codes are designed to maximize the number of information disks, k , for a given number of check
disks.
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check disks; therefore, it achieves the minimum possible check disk overhead of any 2-erasure-

correcting code with minimum update penalty. Similarly, the full-3 code achieves the minimum

possible check disk overhead of any 3-erasure-correcting code with minimum update penalty.

6.2 Codes with Good Reliability Properties

Sometimes we are willing to use a code that has less than optimal check disk overhead, but

achieves extremely high reliabilty. In a t -erasure-correcting code, the fraction of sets of t +1-

erasures that can be corrected has a significant effect on the overall reliability of the code. Note

that in a t -erasure-correcting code with minimum possible update penalty, it is impossible to

correct all sets of t +1-erasures. In particular, because every information bit is associated with t

check bits, it is impossible to correct the set of t +1-erasures consisting of an information bit and

its t check bits. We call such sets of erasures bad t +1-erasures. One way to design a reliable t -

erasure-correcting code with minimum update penalty is to ensure that it corrects all sets of t +1-

erasures except bad t +1-erasures. At the same time, it is desirable to keep the check disk over-

head as low as possible.

In Section 6.2.1 we will prove an optimality result concerning correctability of 3-erasures

and check disk overhead of 2-erasure-correcting codes. We will show that the 2d-parity code

presented in Section 3 is optimal in its class. In Section 6.2.2, we will prove an optimality result

concerning correctability of 4-erasures and check disk overhead of 3-erasure-correcting codes.

We will also present two new 3-erasure-correcting codes, the additive-3 code and the steiner

code, prove that they correct all sets of 4-erasures that are not bad, and show that they are optimal

or near optimal in their class.

6.2.1 Highly Reliable Double-Erasure-Correcting Codes

Theorem 1: If a code is 2-erasure-correcting, has minimum update penalty, and corrects all sets

of 3-erasures except bad 3-erasures, then its check disk overhead is at least 4/c , where c is the
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number of check bits.

Pf: Consider any 2-erasure-correcting code with c check bits and minimum update penalty that

corrects all sets of 3-erasures except bad 3-erasures. We will prove that the maximum number of

information bits in such a code is c 2/4. Therefore, the check disk overhead is at least

c /(c 2/4) = 4/c.

The parity check matrix H = [P | I ] of this code can be represented as a graph. The graph

contains c vertices, which correspond to the c rows of P . The columns of P have weight two.

The graph contains an edge between two vertices v 1 and v 2 if and only if there exists a column in

P that contains 1’s in the rows corresponding to v 1 and v 2.

Suppose, for the purpose of contradiction, that the graph contains a clique of size three. The

vertices of the clique correspond to three rows of P. The edges correspond to three columns of P.

Let the three rows of P be i 1, i 2, and i 3, and the corresponding vertices be vi 1
, vi 2

, and vi 3
. Let the

three columns of P be j 1, j 2, and j 3, and the corresponding edges be ej 1
, ej 2

, and ej 3
. Without

loss of generality, assume ej 1
= (vi 1

,vi 2
), ej 2

= (vi 1
,vi 3

), and ej 3
= (vi 2

,vi 3
).

Consider column j 1. Since j 1 corresponds to the edge ej 1
between vi 1

and vi 2
, it follows

from the definition of the graph that the only 1’s in column j 1 appear in rows i 1 and i 2. Similarly,

the only 1’s in column j 2 appear in rows i 1 and i 3, and the only 1’s in column j 3 appear in rows

i 2 and i 3. It follows that the sum of columns j 1, j 2, and j 3 (mod 2) is the zero vector. Therefore,

columns j 1, j 2, and j 3 constitute an uncorrectable 3-erasure that is not bad, which contradicts the

fact that the code corrects all sets of 3-erasures that are not bad. It follows that the graph

corresponding to a code’s parity check matrix cannot contain a clique of size three.

By Turán’s Theorem (see, for example, [Bollobás86]), a graph with c vertices that does not

contain a clique of size three has at most c 2/4 edges. Therefore, the graph corresponding to the

parity check can contain at most c 2/4 edges. Since each edge corresponds to a column of P , and

each column of P corresponds to an information bit, the code has at most c 2/4 information bits.
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It follows that the check disk overhead of the code is at least 4/c . `

The 2d-parity code is 2-erasure correcting and has minimum update penalty. We now prove

that it corrects all sets of 3-erasures except bad 3-erasures.

Theorem 2: The 2d-parity code corrects all sets of 3-erasures except bad 3-erasures.

Pf: Recall the description of the 2d-parity code. Some of the check disks compute parity along

rows, and some compute parity along columns. Each information disk is checked by a ‘‘row

check disk,’’ and a ‘‘column check disk.’’ To show that 2d-parity corrects all sets of 3-erasures

except bad 3-erasures, we must show that any set of three columns of H 2dparity = [P 2dparity | I ]

which does not correspond to an information bit and its two check bits, is linearly independent.

For simplicity, assume that the top c /2 rows of P 2dparity correspond to the row check disks,

and the bottom c /2 rows of P 2dparity correspond to the column check disks (as in Figure 4). Then

P 2dparity consists of all possible columns of weight 2 with the property that one of the 1’s in the

column occurs in the first c /2 rows, and the other occurs in the last c /2 rows.

Consider any two columns of P 2dparity . If the two columns do not contain a 1 in a common

row, then the sum will have weight 4. If the two columns do contain a 1 in a common row, then

their sum will be a column which either contains two 1’s in its first c /2 rows, or two 1’s in its last

c /2 rows. It follows that the sum of any two or three columns of P 2dparity cannot be the zero vec-

tor, and the sum of two columns of P 2dparity and one column of I cannot be the zero vector either.

A set of two columns from I and one column from P 2dparity can only sum to zero if the columns

correspond to an information disk and its two associated check disks. Finally, any three columns

of I are linearly independent. `

The check disk overhead of the 2d-parity code is c /4, where c is the number of check bits.

Thus the 2d-parity code achieves the optimal check disk overhead possible for 2-erasure-

correcting codes with minimum update penalty that correct all sets of 3-erasures except bad 3-

erasures. In fact, Turán’s theorem also states that the only graph with c vertices that has c 2/4
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edges and no clique of size 3 is the bipartite graph with c /2 vertices on each side of the biparti-

tion. This graph corresponds to the 2d-parity code − vertices on one side of the bipartition are

row checks and vertices on the other side are column checks. Thus, if a code is 2-erasure-

correcting, has minimum update cost and corrects all sets of 3-erasures except bad 3-erasures,

then it must be 2d-parity.

6.2.2 Highly Reliable Triple-Erasure-Correcting Codes

We present two 3-erasure-correcting codes with minimum update penalty that correct all

sets of 4-erasures except bad 4-erasures: the steiner code and the additive-3 code. We also prove

(Theorem 3) that any such code has a check disk overhead that is at least 6/(c −1). The steiner

code achieves this minimum possible check disk overhead. However, the steiner code is defined

only when the number of check disks is a power of 3. The additive-3 code, in contrast, is defined

whenever the number of check disks is an odd multiple of 3. Moreover, the additive-3 code

achieves a check disk overhead, 6/(c −3), which is vanishingly larger than optimal as disk arrays

get larger. Therefore, the steiner code seems to be of theoretical interest only and will not be con-

sidered for the more practical considerations in Section 8.

We first prove Theorem 3. We then present the steiner code and the additive-3 code. For

each code, we prove that it corrects all sets of 4-erasures except bad 4-erasures.

Theorem 3: A 3-erasure-correcting code with minimum update penalty that corrects all sets of

4-erasures except bad 4-erasures has check disk overhead at least 6/(c −1).

Pf: Let H = [P | I ] be the parity check matrix of a code that has the properties stated in the

theorem. Let us say that a pair of rows r and s of P , and a column j of P , are incident with each

other if column j contains 1’s in rows r and s . We show that every pair of rows of P is incident

with at most one column of P .
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Suppose that there is a pair of rows r and s of P , such that there are two columns of P

incident with these rows. Assume the first column contains 1’s in rows a , r , and s , and the

second contains 1’s in rows r , s , and b . Then the sum of these two columns is a vector with 1’s

in rows a and b . If we add to this vector the column of I containing a 1 in row a , and the

column of I with a 1 in row b , then the result is the zero vector. Thus there is a set of columns of

H consisting of two columns of P and two columns of I that is not linearly independent. It fol-

lows that there is a 4-erasure that is not bad and that cannot be corrected, which is a contradiction.

Each column of P has weight three, and so is incident with exactly three pairs of rows. We

have just proved that each pair of rows of P is incident with at most one column of P . It follows

that if the number of rows of P is c , then the number of columns of P is at most (2
c)/3. Thus the

check disk overhead of the code is at least 6/(c −1). `

Definition: The Steiner code is based on a Steiner triple system (see, for example, [Bollobás86]).

Let X = {0,1,2, . . . , c −1}. A Steiner triple system of X is a set of subsets X 0, X 1, . . . ,

X (c (c −1)/6)−1 of X such that each subset is of size three (a triple), and every pair of elements x , y

in X appears in exactly one subset Xi (i ∈{0,1, . . . , (c (c −1)/6)−1}).

We use a simple, recursively defined, Steiner triple system of X = {0,1, . . . , c −1} to con-

struct our code. We call this Steiner triple system Steiner (c ). Steiner (c ) is defined only when c

is a power of three. Let k +Steiner (c ) denote the Steiner triple system of {k ,k +1, . . . , k +c −1}

produced by adding k to every element of every subset in Steiner (c ). The recursive definition of

Steiner (c ) is as follows (c is a power of three):

1) For c >3, Steiner (c ) = Steiner (c /3) ∪ c /3 + Steiner (c /3) ∪ 2c /3 + Steiner (c /3) ∪

{{i , c /3 + ((i +j ) mod c /3), 2c /3 + ((i +2j ) mod c /3)} | i ,j ∈{0,1,..., c /3 − 1}}

2) Steiner (3) = {{0,1,2}}
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For example, Steiner (9) is

{ {0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, {1,4,7}, {2,5,8},

{0,4,8}, {1,5,6}, {2,3,7}, {0,5,7}, {1,3,8}, {2,4,6} }

It is straightforward to show that Steiner (c ) is actually a Steiner triple system.

The steiner code is defined by the parity check matrix Hsteiner = [Psteiner | I ], which has the

following form. Number the rows of Psteiner from 0 to c −1. Psteiner consists of all distinct

columns that contain 1’s in rows q , r , and s , where {q ,r ,s } is a subset in Steiner (c ).

The columns of Psteiner are a subset of the columns of Pf ull 3. Since the full-3 code is 3-

erasure-correcting, so is the steiner code. By the definition of a Steiner triple system, for every

pair of rows of Hsteiner , there is exactly one column of Psteiner that contains 1’s in that pair of

rows. Since each column of Psteiner contains three 1’s, each will be selected by a pair of rows in

Hsteiner (2
3) times. Therefore, there are (2

c)/(2
3) columns in Psteiner , and it follows that the check

disk overhead of the code is 6/(c −1). Figure 6 shows a Steiner parity check matrix with 9 check

disks constructed from our example, Steiner (9).

Theorem 4: The steiner code corrects all sets of 4-erasures except bad 4-erasures.

Pf: We know that the steiner code is 3-erasure correcting; thus, any set of three columns of

Hsteiner = [Psteiner | I ] is linearly independent. It is therefore sufficient to prove the following

claim: If a set of four columns of Hsteiner does not consist of columns corresponding to an infor-

mation bit and its three associated check bits, then those four columns do not sum to zero.

The proof of our claim is by induction on c. The claim is clearly true for c = 3, because

when c = 3, Hsteiner consists of exactly four columns: one of weight 3 corresponding to an infor-

mation bit, and the others corresponding to the three associated check bits. Assume that c >3,

that c is a power of 3, and that the claim holds for all smaller powers of 3.
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Note that the triples of Steiner (c ) are of two basic types: those that are subsets of

{k , k +1 , . . . , k + c /3 − 1} for some fixed k ∈{0, c /3, 2c /3}, and those that contain one element

from each of {0, 1, 2 , . . . , c /3 − 1}, {c /3, c /3 + 1 ,.., 2c /3 − 1}, and {2c /3, 2c /3 + 1 , . . . , c − 1 }.

We call the former type vertical triples and the latter type horizontal triples. The proof is broken

into cases. We show two of them as examples.

Case 1: The four columns are all contained in Psteiner , and they all correspond to vertical triples.

Suppose all four of the vertical triples in this case are contained in

{k , k +1 , . . . , k + c /3 − 1} for some fixed k in {0, c /3, 2c /3}. Then the triples are triples of the

Steiner triple system k +Steiner (c /3). It follows from the induction hypothesis that the four

columns do not sum to zero.

Suppose therefore that the four triples are not all contained in a single set

{k , k + 1 , . . . , k + c /3 − 1} (k ∈{0, c /3, 2c /3}). Let {k 1, k 1 + 1, . . . , k 1 + c /3 −1} be a set that

contains at least one of the triples. At most three of the four triples can be contained in this set.

Because Steiner (c /3) is 3-erasure-correcting, the columns corresponding to these (at most three)

triples cannot sum to zero. The remaining columns do not contain 1’s in rows

{k 1, k 1 + 1, . . . , k 1 + c /3 −1} and, therefore, the four columns do not sum to zero.

Case 2: The four columns are all contained in Psteiner , and they all correspond to horizontal tri-

ples.

Assume that the four columns do sum to zero. We will show that this assumption leads to a

contradiction.

Because the columns sum to zero, each element of the corresponding triples appears in an

even number of those triples. Let the four triples be

{r 1,s 1,t 1}, {r 2,s 2,t 2}, {r 3,s 3,t 3}, and {r 4,s 4,t 4},

where
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rk ∈{0, 1,..., c /3 − 1}, sk ∈{c /3, c /3 + 1,..., 2c /3 − 1}, and tk ∈{2c /3, 2c /3 + 1,..., c −1}

for k ∈{1, 2, 3, 4}.

Suppose that some element appears in all four of the triples. Without loss of generality,

assume that element is r 1 (i.e. r 1 = r 2 = r 3 = r 4). Two triples have at most one element in com-

mon. Hence all other elements but r 1 appear in exactly one of the four triples, and the four

columns do not sum to zero. Contradiction.

Therefore, every element appearing in the four triples must appear in exactly two of them.

Without loss of generality, assume that r 1 = r 2. It follows that r 3 = r 4, and s 1 ≠ s 2. s 1 must

appear in exactly two triples. Without loss of generality, assume s 1 = s 3. It follows that s 2 = s 4,

t 1 = t 4, and t 2 = t 3.

Recall that every horizontal triple is equal to

{i , c /3 + ((i +j ) mod c /3), 2c /3 + ((i +2j ) mod c /3)}

for some i ,j ∈{0, 1, ...,c /3 − 1}. Note that i = 2(i +j )−(i +2j ), which implies that for

k ∈{1, 2, 3, 4},

rk ≡ (2sk −tk ) mod c /3.

Therefore,

r 1 = r 2 ≡ (2s 1−t 1) mod c /3 = (2s 2−t 2) mod c /3

and

r 3 = r 4 ≡ (2s 1−t 2) mod c /3 = (2s 2−t 1) mod c /3.

As a consequence, 2t 1 ≡ (2t 2) mod c /3. Because c /3 is odd and

t 1,t 2∈{2c /3, 2c /3 + 1, . . . , c − 1},

t 1 = t 2. But then t 1 appears in all four triples, rather than in exactly two of them. Contradiction.
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This completes the proof of Case 2. The remaining cases are simpler, and we omit them.

`

Definition: The additive-3 code is defined by the parity check matrix H = [Padditive 3 | I ], which

has the following form. Choose c , the number of check bits, to be an odd multiple of 3. Number

the rows of Padditive 3 from 0 to c −1. Padditive 3 consists of all distinct weight 3 columns that con-

tain 1’s in rows q , r , and s , where q + r + s ≡ 1 mod c .

The columns of Padditive −3 are a subset of the columns of Pf ull −3, so the additive-3 code is

3-erasure-correcting. To calculate the number of information bits of the additive-3 code, note

that if the variables q and r are assigned values from [0...c −1], then there is precisely one assign-

ment to s from [0...c −1] such that q + r + s ≡ 1 mod c . Thus there are c 2 ways of assigning not

necessarily distinct values to q , r , and s such that q + r + s ≡ 1 mod c . In any such assignment,

at most two of the variables can have the same assignment, because if all three had the same

assignment, x , then 3x ≡ 0 mod c. It follows that there are c 2−3c assignments satisfying q + r +

s ≡ 1 mod c such that the assignments to q , r , and s are distinct. Dividing by the number of per-

mutations of q , r , and s , we find that the number of information bits of the additive-3 code is

(c 2−3c )/6; hence, the check disk overhead is 6/(c −3).

Theorem 5: The additive-3 code corrects all sets of 4-erasures except bad 4-erasures.

Pf: The additive-3 code is 3-erasure-correcting. Therefore, the theorem holds if and only if no set

of four columns of Hadditive 3 sums to zero, unless the columns correspond to a data bit and its

three associated check bits. We begin by proving a result about the columns of Padditive 3. A

column of Padditive 3 is represented by a set {q ,r ,s } where q + r + s ≡ 1 mod c , and the three 1’s

in the column occur in rows q , r , and s . Our claim is that if {q ,r ,s } and {a ,b ,d } represent two

different columns of Padditive 3, then the two sets contain at most one element in common.

Assume not. Then without loss of generality, a = q and b = r . It follows that
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a + b + s ≡ 1 mod c ; a +b +d ≡ 1 mod c

which implies that s = d , and {q ,r ,s } = {a ,b ,d }. The two sets represent the same column, which

is a contradiction.

Consider a set consisting of 4 columns from Padditive 3. We want to show that these columns

do not sum to zero. Let {a ,b ,d } and {q ,r ,s } be the sets which represent two of the columns.

These sets either contain one element in common, or no elements in common. Suppose first that

they do not contain any elements in common. In this case, the sum of the two columns is the

column {a ,b ,d ,q ,r ,s }. If the 4 columns from Padditive 3 did sum to zero, then the sets represent-

ing the other 2 columns would have to be three element subsets of {a ,b ,d ,q ,r ,s }. However, any

three element subset of {a ,b ,d ,q ,r ,s } contains at least two elements in common with either

{a ,b ,d } or {q ,r ,s }, which leads to a contradiction. Therefore, if the four columns from Padditive 3

sum to zero, then {a ,b ,d } and {q ,r ,s } must contain exactly one element in common. Assume

without loss of generality that d = s . In this case the sum of columns {a ,b ,d } and {q ,r ,d } is the

weight 4 column represented by {a ,b ,q ,r }. If the 4 columns of Padditive 3 sum to zero, then the

sum of the other 2 columns must also be the column {a ,b ,q ,r }. The sets representing these other

two columns can contain at most 1 element in common with {a ,b } and {q ,r }. It follows that the

sets must be of the form {a ,q ,z } and {b ,r ,z } or {a ,r ,z } and {q ,b ,z }. Without loss of generality

assume they are of the form {a ,q ,z } and {b ,r ,z }. The following is true:

a +b +d ≡ 1 mod c ; q +r +d ≡ 1 mod c

a +q +z ≡ 1 mod c ; b +r +z ≡ 1 mod c

These equations imply that

a +b ≡ (q +r ) mod c and a +q ≡ (b +r ) mod c

Subtracting the two equations yields b −q ≡ (q −b ) mod c which implies that 2(b −q ) ≡ 0 mod c .

Because c is odd, the only number between 0 and c −1 which satisfies the equation 2x ≡ 0 mod c

is 0, which implies that b = q . But if b = q then {a ,b ,d } and {q ,r ,d } have two elements in com-
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mon, which is a contradiction. Therefore, a set of four columns of Padditive 3 cannot sum to zero.

To complete the proof, one must show that other sets of four columns of Hadditive 3 (e.g. sets

consisting of two columns from Padditive 3 and two columns from I) do not sum to zero either,

unless the columns correspond to a bad 3-erasure. These cases are easier than the above case, and

we omit them. `

7. Controlling Groupsize with Additional Overhead

A major disadvantage of the full-2 and full-3 codes is that they have extremely large group

sizes. In fact, large group size is an inevitable result of low check disk overhead. Any t-erasure-

correcting code with parity check matrix H = [P | I ] and minimum possible update penalty has t

1’s in each column of the c xk matrix, P , and one 1 in each column of the c xc matrix, I , so its

average group size is (tk +c )/c. This can be expressed as:

check disk overhead × (average group size − 1) = t .

Therefore, in any t-erasure-correcting code with minimum possible update penalty, if k is large

relative to c , the check disk overhead (c /k ) will be small, but the average group size will be

large. Fortunately, it is possible to derive new codes from the full-2 and full-3 codes which will

allow us to trade check disk overhead for smaller group sizes.

Given any linear code, we obtain a new linear code by simply deleting some of its informa-

tion bits; by deleting the corresponding information columns from the original code’s parity

check matrix, we obtain the new code’s parity check matrix. If the original code was t-erasure-

correcting, then the new code will also be t -erasure-correcting.

We can use this fact to design t-erasure-correcting codes that trade disk overhead for

smaller group sizes. Since the new code has fewer information columns, it has higher check disk

overhead, but it also has lower average group size. However, it does not necessarily have lower

maximum group size. We would like to be able to choose the information columns to be deleted
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in such a way that the maximum group size of the new code is close to its average group size. We

will do this by seeking particular orderings for the columns of a code’s parity matrix, which we

call balanced orderings, that insure that all codes derived from this parity matrix by deleting

information disk columns from the right will have average and maximum group size close

together.

Let us say that a parity check matrix and its associated code have balanced group size if the

following hold: when the average group size is an integer, all groups are the same size; when the

average group size is not an integer, the maximum group size is one greater than the minimum

group size. The five codes discussed in the previous section with examples in Figures 5 and 6 all

have balanced group size. Let H = [P | I ] be the parity check matrix of a code with balanced

group size. We say the the columns of H are arranged in a balanced ordering if for any i (less

than the number of columns in P ), a new code with information columns identical to the first i

columns of P will have balanced group size. In Theorem 6, we prove that it is possible to

achieve a balanced ordering for the full-2, full-3, 2d-parity, steiner, and 3d-parity codes. Thus

codes with balanced group size can also be derived from these codes by deleting, from the right,

the columns of each code’s P matrix.

Theorem 6: There exist balanced orderings of the full-2, full-3, 2d-parity, 3d-parity, and steiner

codes.

Pf: Suppose c is divisible by t . Consider a set of distinct columns of length c and weight t .

Number the positions in the columns from 0 to c −1. A set of columns is factorizable if it is possi-

ble to partition the columns into disjoint subsets of c /t columns, such that within each subset, for

all i between 0 and c −1, there is exactly one column containing a 1 in position i . Such a parti-

tion is called a factorization. Each subset in the partition is called a factor.

Given a factorization of a set of columns, those columns can be arranged in a balanced ord-

ering by simply putting down the columns factor by factor. That is, the first c /t columns of the
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ordering are the columns of one factor, the next c /t columns are the columns of another factor,

and so on.

A theorem of Baranyai states that if t divides c , then there exists a factorization of the set

consisting of all columns of length c and weight t [Brouwer79a, Bollobás86]. This theorem

implies that it is possible to achieve a balanced ordering of the full-2 code when c is even, and of

the full-3 code when c is divisible by 3. An explicit construction for a factorization of the set of

weight 2 columns of length c , when c is even is given by Bollobás [Bollobás86]. This construc-

tion can be modified slightly to produce a balanced ordering of the full-2 code when c is odd. A

more general theorem of Baranyai [Brouwer79a] (which essentially implies the existence of an

"approximate factorization") can be used to show that the full-3 code also has a balanced ordering

when c is not divisible by 3.

In the 2d-parity code, factorizing the columns of P is trivial. We omit the proofs that the

columns of P are also factorizable in the steiner code and the 3d-parity code. `

We show balanced orderings for the full-2, 2d-parity, full-3, and steiner codes in Figures 5

and 6. In Theorem 7 we prove there is no balanced ordering of the additive-3 code. However, it

may be possible to produce orderings that are almost balanced, and so this theorem does not in

itself indicate a significant deficiency of the code.

Theorem 7: There is no balanced ordering of the additive-3 code.

Pf: Suppose there is a balanced ordering. Consider the submatrix P′ made up of the first c /3

columns of the ordering. Since each has weight 3, the total weight of the columns is c and the

weight of every row is 1. The rows of P′ are numbered 0 through c −1. Each column corresponds

to a triple r ,s ,t such that the column contains 1’s in rows r , s , and t and q + r + s ≡ 1 mod c .

Let x be the sum of the entries in the triples associated with the columns of P′ . Since the weight

of each row in P′ is exactly 1, x is the sum of the integers from 0 to c −1. That is, x = c (c −1)/2.

The sum of the entries in each triple is congruent to 1 mod c . Since there are c /3 triples, it fol-
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lows that x ≡ c /3 mod c . Therefore c (c −1)/2 ≡ c /3 mod c . But c (c −1)/2 ≡ 0 mod c because by

assumption, c is odd. Contradiction. `

In addition to reducing group size, balanced orderings are useful for designing extensible

I/O systems. Recall, from Section 4, that if we have chosen a code with more columns than we

need, as disks are added to the system the extra columns are put to use. If the original code has a

balanced ordering and disks are associated with columns according to this ordering, then at all

times the group sizes are balanced.

8. Evaluation of Double-Erasure-Correcting and Triple-Erasure-Correcting

Codes

As we mentioned in Figure 1, a simple implementation for repair is periodic visits (for

example, daily or weekly) by maintenance personnel. With this model the mean time to data loss

(MTTDL) is the expected number of repair periods until an unrecoverable set of failures occurs.

Using independent, exponential disk lifetimes with mean M , we can calculate the probability of

y failures (erasures) in a repair period, T ,

(y
N)(1−e −T /M )y (e −T /M )(N −y )

where N is the total number of disks. We have used Monte Carlo simulation on the columns of a

code’s parity check matrix to estimate the fraction of y failures (y -erasures) that are unrecover-

able (linearly dependent) in each of our sample codes. The probability of an unrecoverable set of

failures occurring in an given repair period is then the summation, over all y , of the probability

that exactly y failures occur in this period times the fraction of y failures that are unrecoverable.

The mean number of repair periods until data loss is then just the reciprocal of the probability that

an unrecoverable failure occurs in a single repair period.

For our simulation we use codes that have close to 1000 information disks and we assume

inexpensive disks; that is, disks with a mean time to failure of 50,000 hours or about 5.7 years.
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Our results are shown in Table 1.

First, these results reaffirm our introductory comments about single-erasure-correction: the

1d-parity code is less reliable than a single disk, even if repair is daily. So we turn to double-

erasure-correcting codes and pay the additional check disk update penalty on every write. The

2d-parity code has many times the reliability of a single disk, even if repair is weekly. The full-2

code does better in overhead and still has very good reliability.

The MTTDL for the additive-3 code is much higher than all other codes because it has so

few unrecoverable failure sets. There is no chance of data loss until at least 4 failures occur in

one repair period, but then only about 1 in 109 4-failures is unrecoverable. Even if 4-failures

occurred every day, the mean time to data loss would exceed 106 years. The 3d-parity and steiner

codes share this very high reliability.

Table 1 reports higher MTTDL for the 2d-parity code than for the full-3 code. This may

seem counter-intuitive, because the latter corrects all triple erasures and the former does not. We

can prove, however, that the 2d-parity code has a smaller fraction of unrecoverable 4-erasures

than the full-3 code (for the disk arrays treated in Table 1). Moreover, based on Monte Carlo

simulations, we conjecture that for all m larger than three, the 2d-parity code has a smaller frac-

tion of unrecoverable m -erasures than the full-3 code. Note that in longer repair periods the likel-

ihood of having greater than three erasures will increase, and thus the fraction of unrecoverable

m -erasures (for m >3) will become more significant to determining MTTDL. We believe that

these larger erasure sets explain the higher MTTDL of the 2d-parity code reported in Table 1.

For arrays of about 1000 disks it is not necessary to pay the cost of a third check disk update

penalty on every write. However, if very much larger arrays are considered, then eventually

triple-erasure correction may be necessary. Regardless of immediate need, triple-erasure-

correcting codes dramatically demonstrate the differences in our codes. The 3d-parity is very

expensive in overhead, the additive-3 code has phenomenal reliability with reasonable overhead,
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and the full-3 code has very low overhead yet retains very good reliability.

As we noted in the introduction to this paper, a serious source of data loss in I/O subsystems

is the support hardware: power supplies, cooling, cabling and host memory ports. This support

hardware is likely to be shared among a subset of the disks. If parity groups are organized

orthogonally to support hardware groups, data redundancy provides protection against support

hardware failures as well as catastrophic disk failures [Gibson92, Gibson93]. This technique is

easily extended for the 2d-parity code by organizing support hardware groups on the diagonals of

the 2d array [Newberg93].

As this section has shown, high reliability does not require immediate, automatic recon-

struction to idle ‘‘hot spare’’ disks. However, if a failed disk is the target of frequent accesses

then the performance degradation of reconstructing each request’s data until the next maintenance

personnel visit may justify the more complex automatic approach. In this case a disk array’s reli-

ability depends on the spare pool replenishing process [Gibson92, Gibson93].

9. Codes for Correcting more than Three Erasures

As we have mentioned, we do not envision the use in disk arrays of t -erasure-correcting

codes for t >3. From a theoretical standpoint, however, we are interested in trying to generalize

our work on 2-erasure-correcting and 3-erasure-correcting codes to apply to t -erasure-correcting

codes. Designing t -erasure-correcting codes is more difficult than designing 2-erasure-correcting

and 3-erasure-correcting codes. It is not always possible to extend the 2-erasure-correcting and

3-erasure-correcting codes for arbitrary t . For example, we might try and define the full-t code

with parity check matrix H = [P | I ], where P consists of all distinct columns of weight t . How-

ever, such a code is not t -erasure correcting when t >3, because there are sets of four columns

whose sum is zero (namely sets consisting of two columns of P whose sum has weight two, and

the two appropriate columns of I ).
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The t d-parity code discussed in Section 3 is t -erasure-correcting and has minimum update

penalty, but its check disk overhead is high, (t .(t /c ) t −1
1hhhh

).

One approach to designing t -erasure-correcting codes is suggested by the following

theorem.

Theorem 8: Let H = [P | I ] be the parity check matrix of a code such that all columns of P have

weight t , and for each pair of rows of P , there is at most one column of P containing 1’s in that

pair of rows. Then the code defined by H is t -erasure-correcting.

Pf: Consider a set S consisting of j columns of H , where j ≤t. We show that the sum of the

columns of S is a column with nonzero weight, which will prove that the code defined by H is t -

erasure-correcting. If S contains only columns from I , then the sum of the columns in S is a

column of weight j. Suppose, therefore, that S contains at least one column q from P. The

weight of this column is t. By assumption, for each of the other j −1 columns in S , there is at

most one row in which both q and that other column contain a 1. So there are at most j −1 rows

in which both q and some other column in S contain a 1. Therefore, there is at least one row in

which q contains a 1, and no other column in S contains a 1. It follows that the sum of the

columns in S is a column of weight at least 1. `

The number of information disks in a code of the type treated in Theorem 8 is at most

(2
c)/(2

t ), and thus the check disk overhead is at least t (t −1)/(c −1). For a given number c of check

disks, the problem of designing a code of the type treated in Theorem 8 that achieves this check

disk overhead is equivalent to the following block design problem − given a c element set X , find

a collection of subsets of X of size t such that each pair of elements in X occurs in exactly one

subset. Two necessary conditions for the existence of such a design are that t (t −1) divides

c (c −1), and that (t −1) divides (c −1). These conditions are known to be sufficient for t = 4 and

t = 5 [Hanani61, Hanani75]. Thus, there exist 4-erasure-correcting and 5-erasure-correcting

codes that achieve a check disk overhead of t (t −1)/(c −1) (whenever t and c satisfy the two
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conditions above). These codes have much lower check disk overhead than the 4d-parity and

5d-parity codes. For example, there is a 4-erasure-correcting code with c = 109, k = 981 and

check disk overhead 1/9, found using block designs. The nearest 4d-parity code with at least as

many data disks has c = 864, k = 1296 and check disk overhead 2/3.

Unfortunately, it is not known whether the above two conditions are always sufficient for

t >5. It is only known that they are sufficient provided that c is sufficiently large by a theorem of

Wilson, a proof of which can be found in [Brouwer79b].

For t >3, it is an open question to determine the minimum possible check disk overhead of a

t -erasure-correcting code with minimum update penalty. We know from the above results that

for t = 4 or t = 5, a check disk overhead of t (t −1)/(c −1) can be achieved, and so the minimum

possible check disk overhead is no more than this quantity.

The t d-parity code can be shown to correct all sets of t +1-erasures except bad t +1-erasures.

For t >3, it is an open question to design t -erasure-correcting codes that correct all sets of t +1-

erasures except bad t +1 erasures, and achieve low check disk overhead.

10. Nonbinary Symbol Codes

In this paper we have restricted our attention to coding schemes based on binary codes.

Schemes based on binary codes treat a disk array as a stack of codewords, each codeword com-

posed of one bit from each disk. This allows modifications or reconstructions to be done on units

as small as one bit on a disk. The minimum unit of disk access, called a sector, is usually at least

128 bytes, so one need not require that a codeword include only one bit per disk as long as the

bits it includes are in the same sector. Therefore, it is also possible to consider schemes based on

nonbinary codes. Such schemes have advantages and disadvantages relative to schemes based on

binary codes. We discuss some of these briefly.
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As we mentioned in Section 2, an important advantage of schemes based on binary codes is

that check data can be manipulated efficiently, because computations are done in the field GF[2].

In schemes based on nonbinary codes, computations are done in the field GF[2b ], where b ≠1 is

the number of bits in a symbol, rather than in GF[2]. Computation in GF[2b ] is not difficult to

design, but it is much more expensive than computation in GF[2], and its cost grows with b.

Nonbinary schemes do have the advantage that it is possible to reduce check disk overhead

by increasing b . If the symbol size is permitted to be unbounded, then any number of informa-

tion disks can be protected from all double erasures with only two check disks using, for exam-

ple, a two-check-symbol nonbinary Hamming code, or a two-check-symbol Reed-Solomon code

[MacWilliams77]. The availability of compact encoder/decoder chip sets for Reed-Solomon

codes and the wide range of industrial experience with these codes has led to the use of variations

of the two-check-symbol Reed-Solomon code in disk array products under the name of P+Q par-

ity [ATC90].

A problem in attaining very low check disk overhead through nonbinary codes with only

two check symbols is the reconstruction group size; any single disk failure will involve all disks

in its reconstruction. Reducing reconstruction group size by increasing the number of check

disks introduces another problem; with more than two check symbols, these codes will generally

not have the minimal update penalty of two. However, there is a nonbinary analogue to the

binary full-2 code. This nonbinary full-2 code protects up to c (c −1)(2b −1)/2 data symbols

against double erasure with c check symbols [Gibson92, Peterson72].

In using nonbinary analogues of our binary codes to achieve low disk overhead, we may

decrease reliability by introducing new sets of t +1-erasures that are not bad, and not correctable.

For example, a nonbinary 2-erasure-correcting code achieves low disk overhead by allowing

more than one data disk to share the same pair of check disks. The loss of two data disks that

share the same pair of check disks, and the loss of one check disk from this pair, constitute a 3-
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erasure that is uncorrectable, but is not bad.

Existing nonbinary implementations correct two erasures with two check disks and are

intended for very highly reliable, but small, disk arrays. Further research on nonbinary schemes

for large disk arrays is needed.

11. Conclusion

Arrays of disks are a promising solution to the increasing demand for I/O bandwidth and

access parallelism. If high reliability is to be preserved as the size of these arrays grows, redun-

dancy encodings may be required to guarantee correction of double and perhaps triple failures.

This paper has explored the choice and implementation of redundancy codes for the practi-

cal constraints of disk arrays. In Table 2, we summarize the characteristics of the main codes dis-

cussed in this paper. Our codes all minimize the number of check disks that must be updated

whenever an information disk is updated. Beyond this requirement we have explored codes that

minimize check disk overhead. The reliability of our double-erasure-correcting codes for arrays

of about 1000 information disks is so good that triple-erasure-correction is unnecessary.
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Figure 1. The mean time to data loss in a single-erasure-correcting array is MTTDL =
(MTTFdisk )2 /(#Disks × (Groupsize −1) × MTTR ), where MTTFdisk is the mean lifetime of an
individual disk, #Disks is the total number of disks, Groupsize is 1 + the number of informa-
tion (user data) disks associated with each redundant data disk, and MTTR is the mean time
required to repair and reconstruct a failed disk [Patterson88]. In this figure we show
MTTDL in terms of the number of individual disk’s mean lifetimes expected to pass before
the array suffers an unrecoverable failure. We assume inexpensive disks whose reliability
(MTTFdisk = 50,000 hours) is less than the best available today, and 10% as many redundant
data disks as information disks (Groupsize = 11). Two values for mean repair and recon-
struction time are shown; although 1 hour repair is feasible, it requires on-line ‘‘hot spare’’
disks or continuous human maintenance. In a simpler scheme, repair is carried out during
daily visits by maintenance personnel. In this case mean time to repair would be 12 hours.
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Figure 2. A codeword consists of the set of bits at the same position on each disk. A code
determines which bits in a codeword are check bits and how to calculate these from the
other information bits.
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Figure 3. With parity computed only along rows of disks we have a standard single-
erasure-correcting coding scheme called 1d-parity, and with parity computed both along
rows and along columns we have a standard double-erasure-correcting coding scheme
called 2d-parity. In this example we have used groups with 4 information disks and marked
the groups that contain data disk 5.
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tain it.
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Figure 5. Example parity check matrices for the two 2-erasure-correcting codes discussed
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Figure 6. Example parity check matrices for the three 3-erasure-correcting codes discussed
in Section 6 are shown in this figure.
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Table 1: Comparing Codes for an Array of about 1000 Information Disks

This table contrasts the codes described in Sections 3 and 6 when these codes are applied to
an array of about 1000 information disks. The update penalty is the number of additional
accesses to check disks that accompany each information disk write. The check disk over-
head is the ratio of the number of check disks to information disks. The group size is the
number of disks that must be accessed to reconstruct a single failed disk. The mean time to
data loss (MTTDL) is based on a periodic repair model and on Monte Carlo simulation of
the probability that the set of failures at the end of the repair period is unrecoverable. A sin-
gle disk has MTTF of 50,000 hours, about 5.7 years.
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Erasures Check Disk
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1d-parity 1 1/Groupsize No Low Update Cost Yes
2d-parity 2 4/c Yes Few Triple Failures Yes

full-2 2 2/(c −1) Yes Low Overhead Yes
3d-parity 3 5.2/√ddc Very None Yes

full-3 3 6/(c 2−3c +2) Yes Low Overhead Yes
additive-3 3 6/(c −3) Extremely Few Quadruple Failures No
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Table 2: Characteristics of Erasure Correcting Codes Discussed.


