
SIMFLEX: A Fast, Accurate, Flexible Full-System Simulation
Framework for Performance Evaluation of Server Architecture

Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch,

Roland E. Wunderlich, Shelley Chen, Jangwoo Kim,

Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk

Computer Architecture Laboratory (CALCM)
Carnegie Mellon University, Pittsburgh, PA

http://www.ece.cmu.edu/~simflex

Abstract

The new focus on commercial workloads in simulation
studies of server systems has caused a drastic increase in
the complexity and decrease in the speed of simulation
tools. The complexity of a large-scale full-system model
makes development of a monolithic simulation tool a
prohibitively difficult task. Furthermore, detailed full-
system models simulate so slowly that experimental results
must be based on simulations of only fractions of a second
of execution of the modelled system.

This paper presents SIMFLEX, a simulation framework
which uses component-based design and rigorous
statistical sampling to enable development of complex
models and ensure representative measurement results with
fast simulation turnaround. The novelty of SIMFLEX lies in
its combination of a unique, compile-time approach to
component interconnection and a methodology for
obtaining accurate results from sampled simulations on a
platform capable of evaluating unmodified commercial
workloads.

1. Introduction

Computer architects have long relied on software

simulation to study the functionality and performance of

proposed hardware designs. Despite phenomenal improve-

ment in system performance over the last decades, the

disproportionate growth in hardware complexity has

steadily increased software model complexity and eroded

simulation speed. Research studies of large-scale server

systems have shifted focus from scientific applications [12]

to commercial workloads [1]. This shift has forced simula-

tion tool developers to expand the scope of their simulation

tools to model system components beyond the processor

and memory hierarchy, and support execution of unmodi-

fied operating systems with commercial workloads for

which source code is unavailable [6][10]. The increasing

complexity of both the system model and target workloads

has elevated continued development of monolithic simula-

tors [8][9][10] to a task of herculean proportions.

Moreover, uniprocessor simulations of highly parallel

systems are so slow that researchers must base conclusions

on simulations of only fractions of a second of native

execution time[11][13].

This paper introduces SIMFLEX, a component-based

framework for creating timing models of uni- and multipro-

cessor server systems running commercial applications.

SIMFLEX addresses the problem of exploding model

complexity through a component-based approach to model

construction, inspired by the Asim simulator[4]. SIMFLEX

ensures that accurate and reliable performance results can

be obtained quickly by integrating the SMARTS method-

ology [13] for representative simulation sampling with

novel implementation techniques for eliminating the

runtime overheads that arise from component-based soft-

ware construction.

The following are the key features of SIMFLEX:

• Full System Simulation. SIMFLEX leverages the tech-

nology of the commercially-available Simics simulation

tool [6] to provide functional execution of unmodified

commercial operating systems and applications. SIMFLEX

provides a framework for rapidly building timing models

which augment the system emulation performed by

Simics.
• Compile-time component interconnection. SIMFLEX

takes a novel approach to the interconnection of simula-

tor components designed to eliminate the runtime over-

head of modular software design. SimFlex takes

advantage of generic programming features of C++ to

express component interconnection at compile-time. This

enables the compiler to perform optimizations across

component boundaries.

• Simulation Sampling. SIMFLEX applies the SMARTS

methodology [13] for choosing and rapidly measuring a

representative sample of each workload. SIMFLEX

extends SMARTS to multiprocessor simulations, and pro-

vides support for the development of the code for warm-

ACM SIGMETRICS Performance Evaluation Review (PER)
Special Issue on Tools for Computer Architecture Research,

Volume 31, Number 4, pages 31-35, March 2004

ing model state that is essential to achieving unbiased

measurement with SMARTS.

The remainder of this paper describes the design and

impact of each of the key features of SIMFLEX.

2. Full-System Simulation

Until very recently, simulation tools for studying

server architecture [7][8][9] have focused on the study of

scientific applications, such as the SPLASH-2 benchmark

suite [12]. In recent studies, the server architecture perfor-

mance evaluation community has shifted focus to

commercial applications, such as database management

systems and web servers [1]. With this shift in focus, a

new emphasis has been placed on full-system simulation.

With scientific workloads, overall system performance is

often governed by small kernels which stress CPU features

such as floating point performance, or memory system

bandwidth. Operating system code and peripheral devices

have only a second-order, if any, effect on overall system

performance. With commercial applications, however,

operating system and I/O performance are first-order

determinants of system performance, and must be

included in the software model.

SIMFLEX is built on top of the Simics simulation envi-

ronment to provide functional emulation of a uni- or

multiprocessor system and associated peripheral devices

[6]. Simics models the complete instruction set architec-

ture and peripherals of a target system in sufficient detail

to boot an unmodified operating system and run commer-

cial applications. When run alone, Simics assumes a

simple timing model where all instructions and memory

accesses take a uniform amount of time. SIMFLEX adds

timing to Simics: Simics provides a stream of fetched

instructions to SIMFLEX, and SIMFLEX models system

timing and controls the advance of time in Simics.

Simics can emulate a wide variety of systems and

instruction set architectures (x86, SPARC, etc.). ISA-

specific parts of SIMFLEX are isolated in a single compo-

nent, making it easy to retarget SIMFLEX to provide a

timing model for any ISA supported by Simics. To date,

SIMFLEX has been used to model both x86- and SPARC-

based uni- and multiprocessor systems.

3. Component-based Design

As the scope of a detailed software model increases,

so does the complexity of the software itself. Simply

understanding the model requires a considerable invest-

ment of time and the learning curve that must be climbed

before starting research with monolithic simulation tools is

steep. The keys to successful design of a large-scale

timing model are abstraction and composability. When

working with a complex tool, a researcher must not be

forced to understand the intricate details of each part of the

model at all times. Rather, model detail must be hidden by

layers of abstraction which simplify details irrelevant to

the problem at hand. A complex model should be

composed of abstracted pieces whose general function can

be understood at a glance.

SIMFLEX is designed as a framework for connecting

model components. The conceptual design and termi-

nology of SIMFLEX follows that of Asim, a component-

based simulation tool developed at Intel[4]. Each SimFlex

component models a part of the system. Generally, these

components correspond directly to parts of the hardware

being modelled, for example, a level of cache hierarchy, or

a cache-coherence protocol engine. Other components are

pure software constructs, for example, the “feeder”

component which fetches instructions from Simics, or

components which collect traces of memory transactions

for offline analysis. A SIMFLEX simulator is a collection of

components connected together in a hierarchical fashion

as specified in what is called a wiring description.

SIMFLEX is unique in that these wiring descriptions are

C++ code which, when fed to the compiler, produce a

custom simulator binary reflecting the desired wiring.

3.1. Compile-time Interconnection

The concepts of abstraction, modularity and compos-

ability are not new innovations of SIMFLEX. Indeed, these

are the very foundations of successful software engi-

neering, and should be employed by any software

development effort of the size and scope of a detailed full-

system timing model. However, many traditional software

development approaches to modularization, such as

object-oriented programming, incur a performance over-

head when used to compose many components. In Asim,

components are interconnected by named wires. When

one component wishes to send data to another, the compo-

nent writes to the wire. This data is routed to the receiving

component by looking the wires name up in a global hash

table. For large hardware models, which can have

hundreds or thousands of signals, these hash table lookups

are a noticeable fraction of total simulation time, as much

as 20%[5].

In SIMFLEX, components are interconnected at

compile time, rather than at run time. SIMFLEX takes

advantage of C++’s template generic programming facili-

ties to describe components. Each component is written

with its connections to other components, called ports, left

as unspecified C++ template parameters. The description

of these ports specifies the nature and direction of data and

control flow between components. Components can

exchange arbitrarily complex data types, for example, a

description of a memory transaction or a type representing

a CPU instruction with associated functions for retrieving

the inputs and outputs of the instruction. To create a simu-

lator from a collection of components, the researcher

writes a wiring description in highly stylized C++ code

which concisely lists the components used in the simulator

and how their ports are interconnected. When fed to the

compiler, this wiring file results in the instantiation of

component templates with the specified connections.

The strength of this approach is that each connection

between two components results in direct function calls

between the components at run time. Figure 1 shows an

example of a simplified SIMFLEX simulator with four

components, with two alternative versions of the feeder

component for x86 and SPARC. When the fetch compo-

nent is wired to the x86 feeder component, it calls a

function on the feeder component which returns the

fetched instruction. By making a simple change to the

wiring and recompiling, the fetch component will instead

call a similar function on the SPARC feeder. This change

also transparently changes the instruction data type

exchanged between all components to represent SPARC

instructions. The template facility of C++ allows the same

component code to interact with instructions from both

feeders, despite the large differences between the data

types used to describe instructions in each feeder.

Interconnection of components via function calls

could also be accomplished at run time by clever use of C

function pointers or C++ virtual functions. However, an

advantage of the C++ template approach is that, since the

function call destination is known at compile time, the

compiler can optimize the call. Analysis of compiled

SIMFLEX simulators reveals that nearly all function calls

across ports are inlined by the compiler, often several

levels deep and across multiple components. This kind of

compiler optimization is not possible if components are

interconnected at run time.

3.2. A Library of Reusable Components

Component-based model design enables development

of a library of reusable model components to represent

hardware structures common across many different archi-

tectures. Moreover, multiple versions of a component can

model the hardware structure at various levels of detail.

This allows researchers to trade off accuracy for simula-

tion speed for each component in the system. For example,

we have developed a simple memory component that

applies a constant latency to each memory access, and a

more complex and slower component that models DRAM

bank conflicts. Each experiment can choose to employ the

fast, simple model or more accurate and slow model.

The initial focus of research with SIMFLEX has been

on adding new hardware components to distributed shared

memory nodes to predict future memory requests and

initiate coherence transactions in advance of demand

requests by processing nodes. In order to support this

research, we require highly flexible and detailed models of

cache coherence protocols and the hardware implementa-

tions of these protocols. Thus, we have developed a

detailed simulation of a microcoded coherence engine,

based on the design of the coherence engines of the

Piranha prototype from Compaq [2], and cache models

which support a rich bus protocol sufficient for directory-

based and snoopy coherence protocols. New coherence

mechanisms can be specified in the abstract and intuitive

microcode language that the coherence engine employs,

without the need to modify the simulator code. Since the

focus of this research is on memory system behavior, we

have a correspondingly complex and slow model of

memory system components. However, we use a simpli-

fied in-order CPU model to save development and

debugging time, and accelerate simulation speed.

4. Fast and Accurate Measurement

The disadvantage of detailed software modeling of a

hardware system is the enormous slowdown of simulation

relative to the modelled hardware. Detailed uniprocessor

simulators, such as SimpleScalar [3] are 4000 times

slower than the modelled hardware. Multiprocessor simu-

lators, such as Rsim [8], are even slower, and suffer the

penalty of simulating parallel hardware nodes in series on

a single host. These low simulation speeds render it

impossible to simulate complete commercial workloads

from beginning to end.

To mitigate prohibitively slow simulations,

researchers often use abbreviated instruction execution

streams of benchmarks as representative workloads in

design studies. More than half of the recent papers in top-

tier computer architecture conferences presented perfor-

mance claims extrapolated from abbreviated runs.

Researchers predominantly skip the initial 250 million to

two billion instructions and then measure a single section

of 100 million to one billion instructions. However, this

technique rarely captures representative behavior.

x86
feeder fetch execute cache

SPARC

feeder

Figure 1. A Simple SIMFLEX Simulator.

Recompiling with the SPARC feeder binds the fetch function call

to code in the SPARC feeder, and transparently changes the

instruction data type exchanged by all components.

4.1. The SMARTS approach

In [13], we proposed the Sampling Microarchitecture
Simulation (SMARTS) framework which applies statistical

sampling theory to address prohibitively low simulation

speeds and the inaccuracy of using non-representative

samples. Unlike prior approaches to simulation sampling,

SMARTS prescribes an exact and constructive procedure

for selecting a minimal subset from a benchmark’s instruc-

tion execution stream to obtain performance estimates

with a desired confidence interval. SMARTS uses a measure

of variability (coefficient of variation) to determine the

optimal sample that captures a program’s inherent varia-

tion. An optimal sample generally consists of a large

number of small sampling units. Unbiased measurement

of sampling units as small as 1000 instructions is possible

by applying careful functional warming—maintaining

large microarchitectural state, such as branch predictors

and the cache hierarchy—during fast-forwarding between

sampling units.

The SMARTS procedure details how to apply system-

atic sampling to choose an optimally small sample to

estimate performance metrics, such as cycles per instruc-

tion (CPI), with a desired degree of confidence. In

SMARTS, a sampling unit is defined as U consecutive

instructions in a benchmark’s dynamic instruction stream

such that the population size N is the length of the stream

divided by U. Changing the size of each sampling unit

affects the required sample size, n, since estimating CPI at

a given confidence is directly proportional to the square of

the population’s coefficient of variation, . The

coefficient of variation decreases due to averaging

effects as U is increased, resulting in fewer sampling units

required to achieve an acceptable estimate. In [13], we

demonstrate that choosing a sample with U = 1000 results

in a minimal number of detail-simulated instructions to

achieve estimates with a desired confidence. Typical

benchmark applications will require a sample size of

approximately n = 10,000 units to achieve 99.7% confi-

dence of ±3% error.

The challenge in applying SMARTS in a practical

simulator is in developing techniques to quickly skip past

the portion of each workload between the many sampling

units, and then computing the correct microarchitectural

state prior to detailed measurement of each sampling unit.

Simics simulation, with SIMFLEX disabled, provides a very

fast functional simulation mode, but leaves microarchitec-

tural state (e.g., cache hierarchy, branch predictors and

target buffers, or pipeline state) unchanged. Stale microar-

chitectural state introduces a large bias in the measurement

of individual sampling units and, consequently, the final

estimate. We have observed stale-state induced bias as

high as 50% for sampling units of 10,000 instructions.

We address this stale-state bias with a two-tier

strategy for warming model state. For model state which

has a long history, such as caches, we update the cache

state during functional simulation, an approach we call

functional warming. By continuously warming microar-

chitectural state with very long history, we can analytically

determine a bound on the detailed warm-up required to

initialize the remaining state. Figure 2 graphically illus-

trates how SMARTS alternates between functional warming

of instructions, detailed warm-up of W
instructions (without measurement), and detailed simula-

tion and measurement of U instructions. [13] details the

procedure for determining a sampling rate k to achieve a

desired level of confidence in the resulting estimate. We

believe functional warming with brief detailed warm-up is

the most cost-effective approach to achieve accurate CPI

estimation with simulation sampling.

4.2. Multiprocessor SMARTS

Simulating multiprocessor server systems with

SIMFLEX presents new challenges to simulation sampling.

Selecting systematic samples from a single-processor

program execution stream is a well-defined and straight-

forward procedure. A multiprocessor program execution,

on the other hand, is comprised of multiple instructions

streams with asynchrony and non-determinism among

them. A key challenge for SIMFLEX lies in acquiring a

sample measurement that is free of distortion from these

effects. In addition, because the emulation phases of

SMARTS do not capture timing information, another chal-

lenge is in approximating the relative progress of the

different processors.

The most important performance metric for multipro-

cessor systems is total program run time, which, in turn,

can be used to determine other metrics. To apply sampling

to this problem, we focus on multiprocessor program

n VCPI
2

VCPI

0 N

U instructions are measured as a
 using detailed simulationsampling unit

... sampling unitsn

Benchmark dynamic instruction stream

j j k+ j k + 2

 instructions of detailed
simulation warm state before
each sampling unit

WU k W(– 1) – instructions are
functionally simulated and large
structures may be warmed

Figure 2. Systematic sampling in SMARTS.

U k 1– W–

execution along the critical path. In typical parallel execu-

tion, at any given moment, there are a small number of

processors that are responsible for generating critical

results for other processors. These critical path processors

set the pace for the entire system via interlocking synchro-

nization primitives. To estimate the total run time of a

multiprocessor program, we only need to sample the

program executing on the critical path processors during

the cycle-accurate measurement phase. Figure 3(left)

depicts an example execution of a parallel program and its

critical path. Figure 3(right) depicts how cycle-accurate

measurement along the critical path reduces to a (unipro-

cessor-like) interleaving of measurements across the

processors. The behavior of the off-critical-path proces-

sors does not contribute to the determination of overall

runtime. Synchronization along the critical path, and

between critical and non-critical paths, ensures that the

relative progress on each path seen during fast-forwarding

is representative of a native execution. This ensures that

measurements of the critical path processors are not

perturbed by incorrect relative progress on the non-critical

path. We are now working to evaluate the effectiveness of

the critical-path-driven sampling approach with the

SIMFLEX infrastructure.

5. Conclusion

The key to successful simulation studies of large-scale

multiprocessor systems running commercial workloads is

to have a solid foundation for rapid comprehension and

development of timing models, and a rigorous method-

ology for obtaining representative measurement results

quickly and reliably. SIMFLEX leverages the latest

commercial technology, Simics, to execute complex work-

loads with minimal development effort; employs a low-

overhead component-based design to accelerate model

comprehension and development; and applies a rigorous

statistical methodology for ensuring accurate measure-

ment results with minimal simulation turnaround time.

Acknowledgements

This work was funded in part by grants and equip-

ment from IBM and Intel corporations, the DARPA PAC/

C contract F336150214004-AF, and an NSF CAREER

award.

References

[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper,

Milo K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood.

Evaluating non-deterministic multi-threaded commercial work-

loads. In Fifth Workshop on Computer Architecture Evaluation
using Commercial Workloads, February 2002.

[2] L. Barroso, K. Gharachororloo, R. McNamara, S. Qadeer

A. Nowatzyk, B. Sano, S. Smith, R. Stets, and B. Verghese.

Piranha: A scalable architecture base on single-chip multipro-

cessing. In Proceedings of the 27th Annual International Sympo-
sium on Computer Architecture, June 2000. Primary Piranha

Reference.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.

Technical Report 1342, Computer Sciences Department, University

of Wisconsin–Madison, June 1997.

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, Chi-Keung Luk, S. Manne,

S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and

T. Juan. Asim: A performance model framework. IEEE Computer,
35(2):68–76, February 2002.

[5] Joel Emer. Personal communication., March 2003.

[6] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel

Forsgren, Gustav Hallberg amd Johan Hogberg, Fredrik Larsson,

Andreas Moestedt, and Bengt Werner. Simics: A full system simu-

lation platform. IEEE Computer, 35(2):50–58, February 2002.

[7] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system

timing-first simulation. In Proceedings of the 2002 ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems,

pages 27–36, June 2002.

[8] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve.

RSIM: An execution-driven simulator for ILP-based shared-

memory multiprocessors and uniprocessors. In Third Workshop on
Computer Architecture Education, February 1997.

[9] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis,

and D. A. Wood. The Wisconsin Wind Tunnel: Virtual prototyping

of parallel computers. May 1993.

[10] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchell, and

Anoop Gupta. Complete computer simulation: The simos approach.

IEEE Parallel and Distributed Technology, 1995.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-

cally characterizing large scale program behavior. In Proceedings
of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.

[12] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceed-
ings of the 22nd Annual International Symposium on Computer
Architecture, pages 24–36, July 1995.

[13] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and

James C. Hoe. Smarts: Accelerating microarchitecture simulation

via rigorous statistical sampling. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2003.

P0
critical
pathP1 Pn

P0

P1

Pn

P0

measurements

Figure 3. Sampling the critical path.

