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Abstract

One class of worm defense techniques that received attention of late is to “rate limit” outbound traffic to contain fast spreading
worms. Several proposals of rate limiting techniques have appeared in the literature, each with a different take on the impetus
behind rate limiting. This paper presents an empirical analysis on different rate limiting schemes using real traffic and attack traces
from a sizable network. In the analysis we isolate and investigate the impact of the critical parameters for each scheme and seek to
understand how these parameters might be set in realistic network settings. Analysis shows that using DNS-based rate limiting has
substantially lower error rates than schemes based on other traffic statistics. The empirical analysis additionally brings to light
a number of issues with respect to rate limiting in practice. We explore the impact of these issues in the context of general worm
containment.
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1 Introduction

Recent fast-spreading worms such as Slammer [3], Blaster [20], and SoBig [1] wreaked havoc on the Internet
and caused millions of dollars in downtime and IT expenses. In addition to consuming valuable network
and computing resources, worms provide potential vehicles for DDoS attacks, as seen in the case of SoBig,
MyDoom, and Blaster [1, 2, 20]. The need to mitigate worm spread is apparent and pressing.

Researchers have proposed various techniques for worm defense, both in detection [11, 25, 13, 17] and
response [26, 24, 4, 16, 7]. Automatic response techniques are of particular interest because methods that
require human intervention simply cannot match the speed and voracity of modern day worms. One class
of automated response techniques seeks to rate limit the outbound spread of worm traffic [26, 4, 16] while
allowing the continued operation of legitimate applications. These rate limiting schemes offer a gentler
alternative to the simple detect-and-block-the-host approach, and therefore are more palatable to actual
deployment1. A recent analytical study showed that when deployed at appropriate points in the network,
rate limiting can substantially reduce the spread of infection [28].

In this work, we undertake an empirical analysis of existing rate limiting mechanisms, with the goal of
understanding the relative performance of the various schemes. Our study is based on real traffic traces col-
lected from the edge router of a network of more than 1200 hosts. The trace data includes real attack traffic
of Blaster and Welchia worms. The outbreak of Blaster and Welchia was substantial in our network, over
100 hosts were infected. We implement each scheme against the trace data and analyze their performance
in terms of false positive and false negative rates. In the case of worm defense, it is particularly important
that false positives are kept at a minimum without greatly impacting false negatives.

We analyze the efficacy of the various schemes on both worm traces and normal traffic. The inclusion of
real worm data allows us to draw insights without having to consider the limitations of simulated attacks. We
study three rate limiting schemes, Williamson’s IP throttling [26], Chen’s failed-connection-based scheme
[4] and Schechter’s credit-based rate limiting [16]. Williamson’s throttling scheme limits the rate of distinct
IP connections from an end host [26]. Chen et al. [4] and Schechter et al. [16] both apply rate limiting to
hosts that exhibit an abnormally high number of failed connections. In addition, we study an alternative
rate limiting strategy based on DNS statistics—namely limiting outgoing connections without prior DNS
translations, thereby restricting the contact rate of scanning worms. Ganger et al. made the first observation
that DNS-based statistics can be used to detect and contain malicious worms [7]. Recently Whyte et al.
showed that DNS-based worm detection can be extended to a network setting [25]. The DNS-based rate
limiting mechanism we study is a modified version of Ganger’s scheme [7]. One goal of this study is to
investigate using DNS behavior as a basis for rate limiting and its relative performance with respect to other
schemes.

In addition to studying DNS-based rate limiting, other components of our analysis seek to understand
the fundamentals of rate limiting technology. For instance, we evaluate the impact of dynamic vs. static
rates. We study the effect of host vs. edge-based deployment. Some of these issues were not explored
adequately in the studies of the individual schemes.

Our analysis is the first that we are aware of that offers evaluation of the different rate limiting schemes
on an equal footing—running against the same traffic traces. Since most of the rate limiting mechanisms
analyzed here target specifically enterprise networks similar to the one where the trace data is collected,
we believe that our analysis provides reasonable insights into how well these schemes might perform in
practice.

The remainder of this paper is structured as follows. Section 2 gives an overview of the existing rate
limiting technology. Section 3 describes the trace data used in the experiments. Section 4 describes our

1This is especially true for network operators such as ISPs whose business depends on offering continued network access to
customers.
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analysis methodology. Sections 5, 6, 7, and 8 analyze the performance of Williamson’s, Chen’s, Schechter’s
and the DNS-based rate limiting mechanism respectively. Section 9 offers a discussion of the results and
insights. We conclude in Section 10.

2 Related Work

The individual rate limiting schemes by Williamson et al. [26], Chen et al. [4], and Schechter et al. [16] are
the target of our analysis. We thus defer discussions of these schemes to later sections of the paper.

Our work aims to provide a study of rate-limiting techniques as a defense against Internet worm prop-
agation. Worm defense is a richly studied field; there exist many schemes outside rate limiting [24, 11,
13, 25, 21, 17]. Some of the schemes are complimentary to rate limiting at large, which can be combined
in practice. For instance, the scan detection work by Weaver et al. [24] and Jung et al. [11] can be used to
protect enterprise networks from incoming infections while rate limiting seeks to contain outbound propa-
gations. Also of interest is worm detection work built on similar principles [25, 17, 13]. But in this work, we
choose to focus on analysis of automated response techniques. We find it beneficial to limit our discussion
to a set of similar technologies so as to permit meaningful comparisons.

We note that there exists a rich body of worm modeling and analysis work [14, 19, 30, 5, 12, 22, 23, 15,
18] that offers theoretical understanding of and technical insights into worm defense. Our goal is not to study
worm propagation in a broad sense, but rather we seek to evaluate and understand the impact and limitations
of a particular defense strategy, rate limiting. We believe that rate limiting is a lightweight technique that
can be readily deployed and administered, and therefore represents a promising defense strategy.

Our study is the first that offers a direct comparison of different rate limiting technologies, using real
traffic and attack traces. The analysis part of our study is similar in spirit to the DDoS filter analysis by
Collins et. al. [6], though the target of our analysis is different and therefore offers different insights and
conclusions.

3 Trace Data

The study in this paper is conducted using traffic traces collected from the edge router of an academic
department. The network has 1200 externally routable hosts and serves approximately 1500 users. Hosts
are used for research, administration, and general computing (web browsing, mail, etc). There is a diverse
mix of operating systems on the network, including Windows, Linux, Solaris, and Mac OS. The network
spans multiple domains and supports a variety of servers, including Windows, AFS, SMTP, and DNS. Since
May 2003 we recorded in an anonymized form all IP and common second layer headers of packets (e.g.,
TCP or UDP) leaving and entering the network. Included among the header information was the source
address, destination address, port number, and size of the payload. We also recorded DNS traffic payloads
for use in the experiment in Section 8.

During the course of tracing, we recorded two worm attacks: Blaster and Welchia [20]. Both are scan-
ning worms that exploited the Windows DCOM RPC vulnerability. For each attack recorded, we conducted
post-mortem analysis to identify the set of infected hosts within the network. We further identified out-
bound worm traffic as those from infected hosts with a particular destination port (e.g., port 135 for Blaster).
Whenever possible, a payload size identical or similar to those publicized in Symantec’s worm advisories
is used as additional evidence to identify worm traffic. It is important to note that infected hosts in our net-
work were exclusively Windows clients that, under normal circumstances, rarely (if ever) made any port 135
connections to destinations outside of the network. Once infected, these hosts initiated tens of thousands of
outbound connections to port 135. As such, the task of identifying worm traffic is made relatively easy.
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Figure 1: Traffic Statistics for the Blaster/Welchia Trace

For the purpose of this analysis, we use a period of 24-day outbound trace, from August 6th, 2003 to
August 30th 2003. This period contains the first documented infection of Blaster in our network, which
occurred on August 11th. Welchia hit the network a week later on the 18th. Since hosts infected by Blaster
and Welchia exhibited similar traffic patterns during the overlapping time period, we do not attempt to
separate the two attacks. Our data suggests that residual effects of the worms lingered on for months but
the effects of the infection are most prominent during the first two weeks of the attack.

Figure 1(a) shows the daily volume of outgoing traffic as seen by the edge router for the trace period.
Figure 1(b) shows the number of distinct IP addresses seen daily for the same time period. As shown, the
aggregate outgoing traffic experienced a large spike as Blaster hits the network on day 6. At its peak, the
edge router saw 11.5 million outbound flows in a day. This is in contrast to the normal 500,000 flows/day.
The increase in traffic is predominantly due to worm activity. Note that there is a small increase in worm
traffic at the end of the trace period. We conjecture that this is because a small number of worms were
reintroduced into the network due to the beginning of the semester activities.

Unless otherwise noted, the trace data refers to aggregate traffic as seen by the edge router. In some
of the later analysis (e.g., Williamson’s host-based throttling), we use host-level traffic from the aggregate
traffic trace. In those cases we will differentiate between infected host traffic and normal host traffic.

4 Analysis Methodology

In this section we describe the high-level analysis methodology used in this study.
As previously mentioned, we use traffic traces collected at the border router of an academic department

network. For this particular study, we use a period of 24-day outbound trace, which includes documented
Blaster and Welchia activities. We traced malicious flows to infected machines and benign flows to legit-
imate applications as described in Section 3. Since the traces are for outbound traffic and we have nearly
comprehensive knowledge of the network, we believe that our separation of malicious vs. benign traffic is
fairly accurate.

The performance criteria we use in the analysis is error rates (e.g., false positives and false negatives)
of the different schemes. We define the false positive rate as the percentage of normal traffic misidentified
as worm traffic and subsequently rate limited. False negative rate here is the percentage of worm traffic that
is not affected by the rate limiting mechanism and permitted through without delay. Rate limited traffic can
be either blocked or delayed. In the analysis that follow, we will attempt to differentiate between these two
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Anon IP # Benign Flows Dropped Total # of Benign Flows Cause
188.139.182.84 17050 43451 HTTP/IM client
188.139.160.173 11774 30819 HTTP client
188.139.222.217 113512 454699 HTTP/IMAP client

Table 1: Per Host False Positives and Cause for Day 6 with Active Set = 5

cases and present error rates accordingly. Also note that we do not calculate false negative rates for the pre-
infection period (for which false negatives are clearly zero), but false positives are considered throughout the
entire 24-day trace period. Whenever appropriate, we present Receiver Operator Curves (ROC) to contrast
false negatives with false positives.

For each scheme analyzed here, there exists a set of parameters that critically impact the performance
of the mechanism. We identify these parameters and evaluate the sensitivity of the error rates with respect
to each parameter. For instance, Chen’s failed-connection-based scheme rate limits those hosts whose rate
of failed connections goes beyond a pre-defined threshold. Clearly, the value of the threshold is important
here—a threshold set too high will permit malicious traffic through thereby resulting in a high false negative
rate while an overly low threshold will produce a high false positive rate. In some cases, the impact of the
parameters has not been studied previously. A contribution of our study is to understand precisely how these
parameters might be implemented in practice to minimize worm propagation while limiting the interference
to normal traffic.

5 Williamson’s IP Throttling

Williamson’s IP throttling scheme operates on the assumption that normal applications typically exhibit a
stable contact rate to a limited number of external hosts (e.g., web servers, file servers) [26]. Restricting host-
level contact rates to unique IPs can limit rapid connections to random addresses. Williamson accomplishes
this by keeping an active set of addresses for each host, which models the normal contact behavior of the
host. The throttling mechanism permits outgoing connections for addresses in the active set, but delays other
packets by placing them in a delay queue. If the delay queue is full, further packets are simply dropped.
The packets in the delay queue are dequeued and processed at a constant rate (one per second, as suggested
by Williamson). At the same rate, the least recently used address in the active set is evicted to make room
for the new connection. As a result, connections to frequently contacted addresses are allowed through with
a high probability while connections to random addresses (as those initiated by scanning worms) are likely
delayed and possibly dropped.

For this scheme, the size of the active set and the delay queue are important. A larger active set permits
a higher contact rate while the length of the delay queue determines how liberal (or restrictive) the scheme
is. Williamson recommended a five-address active set and a delay queue length of 100 for the host-based
scheme. Our analysis reports on the impact of these parameter settings. We also analyze a version of
Williamson’s throttling on the edge router.

End Host Throttling To analyze Williamson’s end host IP throttling, we reconstructed end-host traffic
from the aggregate Blaster/Welchia trace and simulated Williamson’s rate limiting scheme on these traces.
Blaster and Welchia had a significant impact on the network we studed; over 100 hosts were found infected
with Blaster and/or Welchia. In our discussion of Williamson’s mechanism, rate limited traffic is any traffic
delayed or dropped.
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Figure 2: Results for Williamson’s End Host RL mechanism

Figure 2(a) shows the daily false positive rate of the throttling scheme with the size of the active set
ranging from 4 to 10. Again, false positive rates are calculated as the ratio between benign traffic rate limited
and all benign traffic within the same time period. Recall that Blaster hit on the 5th day of the trace period.
The data points in Figure 2(a) are daily averages across all infected hosts. For comparison reasons, we also
tested Williamson’s scheme on normal host traffic, the result of which are shown in Figure 2(b).

A few high-level insights are important here: First, our results suggest that the false positive rates
for infected hosts hover in the range of 20% to 30%, which is a non-trivial percentage. As an example,
Table 1 shows the false positives for day 6 of our trace period (the day of infection). Analysis of false
positives for client machines indicate that Williamson’s scheme performs poorly with extremely active web
clients. For instance, row 1 of Table 1 shows data for a bursty desktop client that runs a web browser and
instant messaging simultaneously. As shown, 39% of the legitimate traffic for this client was subjected
to rate limiting. A closer inspection of the false positives reveals another interesting factor; Williamson’s
scheme attemps to rate limit every packet, as opposed to only the SYN’s. As a result, approximately 99% of
false positives occurred on packets of an ongoing session being rate limited because the destination IP was
evicted prematurely out of the active set. The second observation from the false positive results is also
interesting. Note that the infection occurred on day 5, but we do not observe a visible increase in the false
positive rate; that is, the pre-infection false positive rate is comparable to what is observed during infection.
This result speaks positively of Williamson’s scheme as infections do not seem to cause more normal traffic
to be delayed. Finally, the results in Figure 2 show that the size of the active set (at least for the values
experimented here) has minimum effect on the error rates of the scheme. This is partially due to the fact that
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we averaged statistics across hosts. In practice, one can observe the connection pattern of a particular host
for some period of time before determining the optimal active set size.

Figure 2(c) shows the false negative rates (averaged over infected hosts) for the same time period.
Again, false negative rates are calculated as the ratio between worm traffic that is not rate limited and all
worm traffic within the same time period. As shown, the false negatives are predominantly below 10%
with a few days reaching into the neighborhood of 20%. We also recorded the average delay per packet
(calculated on a daily basis) and the number of dropped flows per day. The average delay statistics are
shown in Figure 2(d). During infection, our record shows that 5% of benign traffic and 10.9% of malicious
traffic were dropped every day. These statistics indicate that during the Blaster outbreak, 89% of worm
traffic was allowed to exit our network, with delays of approximately 18 seconds each. Our traffic data
shows that Blaster scanned at a rate of 10 - 20 scans per second and Welchia at 70 scans per second, the
delay and drop statistics of Williamson’s scheme suggests that it is insufficient to contain the worm.

A straightforward means to induce further delays is to reduce the rate at which connections are de-
queued. However, this runs the risk of starving legitimate traffic. A plausible alternative is to associate a
time-to-live (TTL) field with active set addresses. Each time a new connection is made for an address in the
set, the TTL for that address is renewed. An address is evicted from the active set only when its lifetime has
expired, and only then is a new connection dequeued and processed. This strategy gives rise to a dynami-
cally changing dequeuing rate that is more aligned with the dynamic behavior of the host traffic. As a result,
frequently contacted addresses would have a higher probability of remaining in the active set while worm
traffic can be delayed for a longer period of time. The exact implications of this improvement will require
further studies. A discussion on dynamic vs. static rates can be found in Section 9.

Throttling at the Edge Router Previous studies [15, 28] showed that end-host rate limiting is ineffective
unless universal deployment is feasible. Hewlett Packard’s recent announcement to withdraw support for
the throttling product is indicative of the inherent difficulties that underscore universal deployment [29]. As
part of this study, we investigate the effect of applying Williamson’s throttling to the aggregate traffic at
the edge of the network. Aggregate, edge-based throttling is an attractive alternative because it requires the
instrumentation of only the ingress/egress point of the subnet. Furthermore, aggregate throttling requires a
sublinear amount of states (sublinear to the number of hosts). We note that the logic can be extended to the
ingress/egress point of a network cell within an enterprise, as shown in [18], which can provide additional
protection granularity.

In this analysis we do not differentiate traces from different hosts—the rate limiting algorithm is applied
to the aggregate traffic exactly the same as a host would apply it to host level traffic. In a previous traffic
study, we identified a candidate rate of 16 addresses per five seconds for edge throttling for a similar network
[28]. In the analysis that follow, we present results obtained with four rate limits: 10, 16, 20, and 25 IPs per
every five-second window.

Figure 3(a) shows the false positive rates for edge-router rate limiting using various rate limits. The
corresponding false negative rates are shown in Figure 3(b). Compared with the end-host case, edge-based
rate limiting exhibits significantly higher false positive rates. This is primarily due to the fact that aggregate
throttling penalizes hosts with atypical traffic patterns, thereby contributing to a higher false positive rate.
We can further increase the active set size at the edge to reduce the false positives. However, that will incur
more false negatives as a 50-address active set already renders a 30% false negative rate (see Figure 3(b)).
At the height of infection for this network, 30% of the worm traffic equate to 3.2 million scans per day. With
that many scans permitted through without delay, an exponential spread of infection is highly likely; the rate
limiting scheme has essentially failed.
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Figure 3: Results for Williamson’s RL mechanism at Edge Router

6 Failed Connection Rate Limiting (FC)

Chen et al. proposed a failed connection-based rate limiting scheme based on the assumption that a host
infected by a scanning worm will generate a large number of failed TCP requests [4]. Their scheme uses
this phenomenon as an indication of infection and rate limits hosts with such behavior. In the discussions
that follow, we refer to this scheme as FC (for Failed Connection).

FC is edge router based and consists of two phases. The first phase identifies the potential “infected”
hosts. During this phase a highly contended hash table is used to store failure statistics for hosts. The highly
contended hash table is used to limit the amount of per-host state kept at the router. Once the failure rate for
an entry in the hash table exceeds a certain threshold, the algorithm enters the second phase, which attempts
to rate limit the hosts in the particular hash entry. Chen proposed a “basic” and “temporal” rate limiting
algorithm. We analyze both in this study.

The basic FC algorithm focuses on a short-term failure rate, λ. Chen recommends a λ value of one
failure per second. Once a hash entry exceeds λ failures per second, the rate-limiting engine at the edge
router attempts to limit the failure rate of each host in the hash entry to at most λ. A leaky bucket algorithm
is used to rate limit each host; a token is removed from the bucket for each failed connection and every λ
second a new token is added to the bucket. Once the bucket for a particular host is empty, further outgoing
connections originating from that host are dropped.

Temporal FC attempts to limit both the short term failure rate λ and a longer term rate Ω. In their
algorithm, Ω is a daily rate while λ is a per second rate. The value of Ω is intended to be significantly
smaller than λ * (total seconds in a day). Hosts in a hash table entry are subjected to rate limiting if the
failure rate of the entry exceeds λ per second or Ω per day. The objective of temporal FC is to catch
prolonged but somewhat less aggressive scanning behavior—worms that spread under the rate of λ. One
can also adjust λ to a higher value to accommodate temporary burstiness of failed connections while keeping
the failure rate over a longer period relatively low.

To evaluate these two algorithms we conducted experiments with the aggregate Blaster/Welchia data
set, with varying values of λ and Ω. The hash table size for the network is set to 256, approximately 5 hosts
are mapped to the same entry. We note that the hash table is simply a way to reduce the amount of state.
Since non-infected hosts rarely make more than one failed connection per second, hash collision has very
little effect on false positives.

Figure 4(a) and (b) show the error rates for basic and temporal FC, with λ equaling 1 and Ω equaling
300, as recommended by Chen. Figure 4(a) suggests an increase in the false positive rates during the first
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Figure 4: Error rates of Basic and Temporal FC RL algorithms with λ = 1.0 & Ω = 300. per day

Anon IP # Benign Flows Dropped Total # of Benign Flows Cause
Basic Temporal

188.139.199.15 32896 56979 57336 eDonkey Client
188.139.202.79 25990 32945 33961 BearShare Client
188.139.173.123 5386 13457 15108 HTTP Client
188.139.173.104 4852 6175 6254 Benign Flows from Infected Client

Table 2: Per Host False Positives and Cause for Day 6 for Basic & Temporal λ = 1.0 and Ω = 300

week of infection. The increase in the false positive rates can be attributed to the fact that worm traffic on an
infected host generats failed connections at such a rapid speed that they completely deplete the tokens in the
bucket; a majority of the legitimate connections are thus dropped. This remains true even when the bucket
size is increased from 10 to 100 tokens.

In Figure 4(b) there is a pronounced initial jump in the false negative rates (as Blaster hits on day 6), and
in a few days the false negatives reach a more reasonable level. The bulk of false negatives can be attributed
to the fact that Chen’s schemes call for only a TCP RST packet as an indication of a failed connection. Since
many firewalls simply drop packets instead of responding with TCP RSTs, using TCP RSTs exclusively
underestimates the number of failed connections. To confirm this observation, we also conducted another
experiment that augments Chen’s scheme such that TCP timeout was also considered a failure. The result
of the experiment is shown in Figure 5(b), which indicates that considering TCP timeouts also as failures
greatly reduced the false negatives.

The dramatic drop of false negatives at day 10 can be correlated with the Welchia outbreak. Blaster
scans by sending TCP packets to port 135. This behavior elicits numerous timeouts from hosts behind
firewalls and few TCP RSTs, as evidenced by Figure 5(b). However, due to the different scanning behavior
of Welchia, the false negatives are reduced on day 10 when Welchia is unleashed. Welchia first attempts
to identify hosts using ICMP ECHO requests. If a response is elicited, Welchia attempts to connect to the
machine, which would effect a TCP RST as opposed to a TIMEOUT (since the host does exist, as evidenced
by the ping). As more machines are infected with Welchia, and Blaster machines are patched, a greater
portion of worm traffic causes TCP RST responses, which Chen’s scheme considers a failed connection and
thus lowers the false negatives. In addition, since Chen’s mechanism was only applied to TCP flows, the
ICMP scanning will not use up any tokens when “pinging” a host.
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Figure 5 plots the false positive rates against the false negative rates in a Receiver Operator Curve with
varying values for λ and Ω. The data points in this graph are averaged daily statistics over the trace period.
Due to the fact that temporal is more restrictive towards the creation of failure replies, a significant amount
of non-worm traffic from hosts identified as “infected” is dropped, as evidenced by Table 2. On average
temporal drops nearly all benign traffic once the host is identified as infected.

 0

 5

 10

 15

 20

 25

 30

 35

 5  10  15  20  25  30  35  40  45

Fa
ls

e 
N

eg
at

iv
e 

(%
)

False Positive (%)

ROC Curves for FC w/ varying lambda and omega

λ=2.0

λ=0.1

Ω=10

Ω=1000

Basic lambda=0.1-2.0
Temporal lambda=0.5, omega=10-1000
Temporal lambda=1.0, omega=10-1000
Temporal lambda=1.5, omega=10-1000

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90

Fa
ls

e 
N

eg
at

iv
e 

(%
)

False Positive (%)

ROC Curves for Chen et al. RL w/ and w/o Timeout Enhancement

Basic lambda=0.1-2.0
Temporal lambda=1.0,omega=10-1000

adding Timeout Basic same values
adding Timeout Temporal same values

(a) ROC Curve for varying values of λ and Ω (b) ROC Curve w/ and w/o timeout enhancement

Figure 5: ROC Curve for different λ and Ω values for Basic and Temporal RL algorithms

Comparing FC results to host-based Williamson’s, we can see that the two rendered similar false pos-
itive rates while FC has a higher false negative rate due to its inaccurate failure indications. However, FC
affords a lower storage overhead by not keeping per-host state. A similar modification can be made to
Williamson’s to reduce the storage requirement. One can envision an edge-based implementation that keeps
an aggregate active set for a group of hosts. Only when the delay queue exceeds a certain size, is a per-host
active set instantiated (for that group of hosts). Such an augmentation will be straightforward to implement.

7 Credit-based Rate Limiting (CB)

Another rate limiting scheme based on failed connection statistics is the credit-based scheme by Schechter et. al. [16].
We refer to it as CB (for Credit Based). CB differs from Chen’s in two significant ways. First, it performs
rate limiting exclusively on first contact connections—outgoing connections for addresses that have not been
visited previously. The underlying observation here is that scanning worms produce a large volume of failed
connections, but more specifically they produce failed first-contact connections. Consequently, anomalous
first-contact statistics are indicative of scanning behavior and can be used as an impetus for rate limiting.
The notion of first contact is fundamental to CB and as we show later is instrumental to its every aspect.
Second, CB considers both failed and successful connection statistics. Simply described, CB allocates a
certain number of connection credits per host; each failed first-contact connection depletes one credit while
a successful first contact adds one. A host is only allowed to make first-contact connections if its credit
balance is positive.

It is straightforward to see that CB limits the first-contact failure rate at each host, but does not restrict
the number of successful connections if the credit balance remains positive. Further, all non-first-contact
connections (typically legitimate traffic) are permitted through irrespective of the credit balance. Conse-
quently, a scanning worm producing a large number of unsuccessful TCP requests will quickly exhaust
its credit balance and be contained. Legitimate applications typically contact previously seen addresses,
thereby are largely unaffected by the rate limiting mechanism.
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Figure 6: Results of Error Rates for CB RL

Anon IP # Benign Flows Blocked Total # of Benign Flows Cause
188.139.199.15 22907 57336 eDonkey Client
188.139.202.79 13269 33961 BearShare Client
188.139.173.123 0 15108 HTTP Client

Table 3: Per Host False Positives and Cause for Day 6 for PCH = 64

The CB scheme is an edge-router implementation that operates on per host statistics. The edge router
instrumentation maintains a credit bank for each internal host. The level of initial failure credits per host
(set as 10 in CB scheme) has minimal impact on the performance of the scheme, as that only approximates
the number of failures that can occur throughout a given time period—a host can accrue more credits by
initiating more successful first-contact connections. Our preliminary investigation shows that an initial credit
level between 5 and 20 has negligible impact on the false positive and false negative rates.

To determine whether an outgoing TCP request is a first-contact connection, CB maintains a connection
history PCH (Previously Contacted Host) for each host. The length of the PCH is a critical parameter, as
it directly impacts the level of false positives—a shorter PCH results in more non-first-contact connections
to be identified as first contacts, thereby permitting less normal traffic through when the worm exhausts the
available credits. Schechter suggested a 64-address PCH to balance storage and false positive considera-
tions. We conducted experiments with PCH sizes ranging between 8 and 128 entries. A LRU replacement
algorithm is used to refresh addresses in the PCH.

Figure 6(b) shows the daily false positive and false negative rates for a PCH of 64 addresses. The data
points in this graph are averages across all hosts. As shown, the average false positive and false negative
rates are between 2% and 6%. These results outperform both FC and Williamson’s scheme. This is primarily
due to its strategy of rate limiting first contacts rather than distinct IPs or failed connections. Since worm
scanning consists primarily of first-contact connections, CB’s strategy gives rise to a more precise means of
rate limiting.

Table 3 shows the false positive data for the top twos hosts along with a HTTP client. The statistics
show that the worst case false positive rate is rather high—nearly 40% for the host in row one of Table 3.
Note however, the clients incur exceptionally high false positives are both P2P clients. For a normal HTTP
client (row three in the table), the false positive rate is zero. This last row is a drastic improvement over the
false positive rate the same host suffers under FC’s schemes.
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Figure 6(a) plots the average false positive rates against the corresponding false negative rates for PCH
sizes of 8, 16, 32, 64, and 128. The data points in this graph are obtained by averaging per-host statistics
over the entire 24-day trace period (sans the five pre-infection days). As shown, CB’s error rates are not
particularly sensitive to the length of the PCH’s. A 3% increase in the false positive value is observed
when PCH is reduced from 128 entries to 8. As the PCH size increases so does the false negative. This is
because any connection is allowed to occur if its destination address is in the PCH. With a larger PCH, an
infected client has a higher probability of generating an IP that already exists in the PCH. In our analysis,
using PCH sizes of 8 and 64 respectively doubles the probability of collisions within the PCH. Although
the sequential scanning manner of Blaster forbids duplicate address generation, a possible error generating
the mutex could have allowed multiple instances of Blaster to execute on a single machine, generating the
duplicate destinations found in the PCH since the random address generators will be seeded by the same
value from GetTickCount().

 0

 10

 20

 30

 40

 50

 0  5  10  15  20

P
er

ce
nt

 (%
)

Days

False Positive and False Negative for CB Edge Router w/ PCH = 4096

CB Edge Router False Positive
CB Edge Router False Negative

Figure 7: Error Rates for Aggregate CB with PCH = 4092

Note that since separate connection statistics are kept for each host, CB is fundamentally a centralized
host-based scheme. Aggregating and correlating connection statistics across the network can reduce the
storage overhead. For example, if host A makes a successful first-contact connection to an external address,
further connections for that address could be permitted through regardless of the identity of the originating
host. This optimizes for the common scenario that legitimate applications (e.g., web browsing) on different
hosts may visit identical external addresses (e.g., cnn.com). To test this scenario we evaluated CB from
an edge router position with much larger PCHs. Figure 7 shows the false positives and false negatives for
this edge based CB scheme with a PCH size of 4192. In addition, Figure 11 shows the ROC curve for the
edge router based CB scheme with the PCH ranging from 128 to 8192 entries. As illustrated in Figure 11
the overall false positives increases compared to end host based CB. This is due to the fact that when using
aggregate traffic statistics, is it much more difficult to isolate malicious flows from normal flows.

8 DNS-based Rate Limiting

In this section we analyze a rate limiting scheme based on DNS statistics. The underlying principle is that
worm programs induce visibly different DNS statistics from those of legitimate applications [27, 25, 8].
For instance, the non-existence of DNS lookups is a telltale sign for scanning activity.This observation was
first made by Ganger et al. [7]. The scheme we analyze here is a modification of Ganger’s NIC-based DNS
detection scheme.

The high-level strategy of the rate limiting scheme is simple: for every outgoing TCP SYN, the rate
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Figure 8: Cascading Bucket RL Scheme

limiting scheme permits it through if there exists a prior DNS translation for the destination IP, otherwise
the SYN packet is rate limited. The algorithm uses a cascading bucket scheme to contain untranslated IP
connections. A graphical illustration of the algorithm is shown in Figure 8. In this scheme, there exists a
set of n buckets, each capable of holding q distinct IPs. The buckets are placed contiguously along the time
axis and each spans a time interval t.

The algorithm works as follows: When a TCP SYN is sent to an address that does not have a prior
DNS translation, the destination IP is added into the bucket for the current time interval and the packet is
delayed. When a bucket is filled with q distinct IPs, new connection requests are placed into the subsequent
bucket—thus each bucket cascades into the next one. The n-th bucket, the last in line, has no overflow
bucket and once it is full, new TCP SYN packets without DNS translations will simply be dropped. Packets
in the i-th bucket are delayed until the beginning of the i+1 time interval. As all n buckets expire, they are
reinstated for the next n∗ t time period. This algorithm permits a maximum of q distinct IPs (without DNS
translations) per time interval t, and packets (if not dropped) are delayed at most n∗ t.

The notion of the buckets provides an abstraction, with which an administrator could define rules such
as ”Permit 10 new flows every 30 seconds dropping anything over 120 seconds.” This example rule, then,
would translate to 4 buckets (30 seconds * 4 = 2 minutes) with q = 10 and t = 30. Expressing rate limiting
rules in this manner is more intuitive and easier than attempting to characterize network traffic in terms of
active sets or the failure rate of connections.

This DNS throttling scheme can be implemented at each host or at the edge router. A host-level imple-
mentation can be achieved by keeping DNS-related statistics on each host. Edge-router-based implementa-
tion would require a shadow DNS cache on the edge router to support access to DNS information.

In our study, we implemented the throttling at the edge router, using DNS server cache information and
all DNS traffic recorded at the network border2. More specifically, we mirrored the DNS cache at the edge
and updated the cache as new DNS queries are recorded. For each DNS reply, we extracted the translated IP
address, the host name, and the respective TTL from the incoming payload. This information is then entered
into the mirrored DNS cache at the edge router. Traffic to destination addresses matching an unexpired DNS
record was permitted through, while all other traffic was throttled.

It is worth noting that we only throttle outgoing TCP SYNs instead of all packets. Thus, a host can
carry on with incoming or established connections, but its ability to initiate connections is restricted. As a
result, existing connections do not suffer unnecessary delays or drops. The applications that do experience
false positives from DNS throttling tend to be those that fall outside of the security policies of an enterprise
network (e.g., peer-to-peer applications)—disruption of such applications are therefore not critical to the
network operation. Note that we only tackle TCP traffic, as we use TCP SYNs as a basis for rate limiting.
Out of the four mechanisms analyzed in this paper, only Williamson’s can be applied to UDP traffic without

2As mentioned in Section 3, we recorded all DNS payloads.
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modification, due to the fact that both FC and CB both utilize TCP behavior for characterization.
Using this implementation, we tested both per-host and aggregate throttling. In the next section, we

analyze the results.
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Figure 9: Results for DNS-based End Host RL

8.1 Analysis

The critical parameter for the cascading-bucket throttling scheme is the rate limit, which manifests in the
values of q (the size of each bucket), t (the time interval), and n (number of buckets). To simplify our
analysis, we varied the value of q and kept n and t constant3. Additionally, the value of n∗ t was set to 120
seconds to model the TCP timeout period.

We note that the rate limits specify the number of untranslated IP connections allowed to exit the
network. One could take a simpler approach and block all untranslated connections. Such an approach
would be unsatisfactory for it fails to account for legitimate direct-IP connections. Examples include direct
server-server communication and IP-embedding in HTML [25]. In our data set, we did not observe any
embedded-IP in HTML, but direct IP server-server communications do occur. Peer-to-peer applications can
also induce non-translated IP connections, which we observe is the primary cause of false positives for this
scheme.

We first analyzed the host-level throttling scheme. For this, we maintain a set of cascading buckets for
each host. Figure 9(a) and (b) show the false positive and false negative rates of host-based throttling on

3By varying q and leaving n and t constant, we can achieve the goal of regulating the rate limits
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Anon IP # Benign Flows Delayed Total # of Benign Flows Cause
188.139.199.15 15572 57336 eDonkey Client
188.139.202.79 8958 33961 BearShare Client
188.139.173.123 0 15018 HTTP Client

Table 4: Per Host False Positives and Cause for Day 6 for q = 7
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Figure 10: Results for DNS-based RL at the Edge Router

infected hosts. The data in these graphs are daily error rates averaged over all infected hosts. Figure 9(c)
plots the analogous false positive rates on normal hosts.

These results yield a number of significant observations: First, host-level DNS throttling significantly
outperforms the other mechanisms analyzed previously. As seen in Figure 9, the average false positive
rates fall in the range of 0.1% to 1.7% with corresponding false negative rates between 0.1% to 3.2%, both
significantly lower than the error statistics of the others. It is important to note that even at the peak of
infection (which we recorded 11 million of daily scans from infected hosts), nearly all legitimate flows
are permitted through. Figure 9(d) shows summarized statistics from our analysis. During the trace period,
nearly 100% of the malicious traffic is rate limited (80% are dropped out right and the other 20% are delayed
with an average delay of one minute per connection).

Table 4 shows the example false positive statistics for the host DNS throttling. As shown, the top
ranked false positives occurred with peer-to-peer clients. Note that the HTTP client in row three induced a
39% false positive rate with Williamson’s scheme (see Table 1). Here the HTTP client is not subjected to
rate limiting.

Our results also show that DNS rate limiting is capable of containing slow spreading worms. As a
comparison, Weaver’s Approximate TRW containment mechanism can block worms that scan faster than
1 scan per second [24]. The results in Figure 9 show that, using values of q = 3 and t = 5, the scheme
renders false positive and false negative rates lower than 1%. This means that a worm will have to scan
slower than approximately 0.5 scans per second for it to evade rate limiting. Additionally, approximate
TRW can detect a worm after 10 scans. If the DNS scheme simply blocks all non-translated traffic, it would
have blocked the worm in less than 1 scan4. As discussed previously, this approach is suboptimal. We note
that if the white-list is perfect; that is, all legitimate direct-IP connections are documented in the white list,
there would be no need for rate limiting; one can simply block all untranslated IP connections and achieve

4Whyte et al. also observed this [25].
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nearly zero error rates. However, since a perfect white-list is unattainable in practice, rate limiting offers
a reasonable alternative. Note that the system administrator can set the rate parameters according to the
particular applications running in the network, and potentially tighten the false negative rate.

To test the effect of aggregate throttling, we implemented a single set of cascading buckets for the
entire network. For this set of experiments, the value of q was set to 20, 50, and 100 IPs per five second
window. Figure 10 shows the error rates for the aggregate implementation. As shown, a q value of 20 or
50 IPs yielded few false negatives and a false positive rate of approximately three to five percent. We note
that a sweet spot exists for the aggregate case—it seems to lie somewhere between 50 and 100 IPs per five
seconds. Also note that when q is set to 20 or 50, the false negative rates of edge-based rate limiting are
lower than the host-level scheme. This is due to the fact that the aggregate traffic limit is more restrictive
than the collective limit in the host-based case. Although the aggregate false positive rates are slightly
higher than the host-level case, we find the aggregate results extremely encouraging. The error rates of 5%
false positive and < 1% false positive, means that DNS-based throttling is entirely suitable for an aggregate
implementation.

We note that DNS statistics can be extended to contain mass-mailing worms by rate limiting MX
lookups [25, 27]. In a tightly controlled network, however, port-25 filtering may be more effective. The
extension of DNS-based throttling on MX lookups is out of the immediate scope of this paper.

9 Discussion

Analysis in the previous sections brought to light a number of issues with respect to rate limiting technology.
In this section we attempt to extrapolate from these results and discuss the general insights from the study.

DNS-based Rate Limiting vs. others: A summary comparison of the DNS-based scheme with the others
is in Figure 11. The parameters here are consistent with the values used in the previous sections. Again,
the false positives and false negatives are averaged daily statistics over the trace period. As shown, the ROC
curve for DNS-based rate limiting is significantly closer to the origin than the others, which indicates vastly
superior false positive and false negative rates. More specifically, host-based DNS throttling renders an
average false positive and false negative rate below 1%. These results indicate an extremely strong case for
DNS-based rate limiting. In addition, DNS-based rate limiting allows most benign traffic to pass through
even at the peak of a worm outbreak. This is an extremely desirable characteristic as productivity of users
will not be affected. In addition, it is also viable to utilize first contact statistics (such as CB). As this
allows for previously contacted connections to pass through without delay and thus minimizing the impact
on normal user traffic.

Recall that the q value in DNS throttling allows for q untranslated IPs per host to exit the network every
t seconds. To put things in perspective, for the first day of infection, a total of 468,300 outbound legitimate
flows are generated for the entire network. Out of these, a total of 463 flows are dropped when the value of
q is set to 7, which yields a false positive rate of 0.099%. Note that this is less than 1 dropped flow per host
per day. As a comparison, the CB scheme dropped a total of 3767 legitimate flows for the same day, which
translates to a false positive rate of 7.8%.

The dramatic difference in the performance can be attributed primarily to the fact that DNS traffic
patterns, compared to other statistics, more precisely delineate worm traffic from normal behavior. Most
network applications utilize DNS translations—direct connections without prior IP translations are rare.
DNS-based rate limiting can thus impose severe limitations on worm traffic without visibly impacting nor-
mal traffic.

One of the reasons that scanning worms are successful is because they are able to probe the IP space ex-
tremely rapidly in their search for potential victims. Navigation through the IP space can be easily automated
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because it contains numeric addresses only. The DNS name space, on the other hand, is less populated and
has poorer locality properties. Navigating in this space is a far more difficult process to automate. DNS-
based throttling forces scanning worms to probe the DNS name space, thereby reducing the scan hit rate
and substantially raising the level of difficulties for scanning worms to propagate. A potential attack against
DNS throttling is to equip each worm with a dictionary of host names and domains. This effectively turns a
scanning worm into a worm with a hit-list. Hit-list worms are significantly more difficult to engineer. If the
only viable means to bypass DNS-based throttling is for the worm to carry a hit-list, then that in itself is a
positive testimony for DNS-based throttling.

Issues with DNS-based rate limiting: There are various ways an attacker can attempt to circumvent the
DNS rate limiting mechanism. We discuss a few of them here.

First, a malicious worm could use reverse DNS-lookups (PTR lookups) to “pretend” that it has received
a DNS translation for a destination IP. Jung et. al. [10] reports that around 24 - 31% of DNS queries are PTR
lookups. They characterize these lookups are primarily for incoming TCP connections or lookups related to
reverse blacklist services. These types of lookups can be easily filtered and not considered as valid entries
in the DNS cache. In addition a PTR lookup prior to each infection attempt will significantly slow down the
infection spread.

Second, an attacker could setup a fake external DNS server and issue a DNS query to the “DNS” server
for each generated IP. This type of set up can be easily filtered at the border by establishing a “white-list”
of legitimate external DNS servers. In addition, the attacker needs a server with a substantial bandwidth to
accommodate the scan speed. Such a server is not trivial to obtain.

In order to accommodate SOHO (Small office Home office) users who use legitimate external DNS
servers. One can implement a DNS query pairing mechanism, using open source packet scrubber such as
Hogwash [9]. If the packet scrubber only sees a connection attempt without a DNS query at the router, this
can be flagged as a non-dns lookup connection attempt. In addition, one could also use a whitelist for mobile
users who do not want to use the local DNS servers.

Dynamic vs static rates: Rate limiting schemes generally impact the rate of both legitimate and malicious
connections. We have already established that DNS-based throttling performs better than the others. One of
the reasons is that DNS throttling has very little impact on legitimate traffic, it permits legitimate connections
(as long as it has valid DNS translations) through at the same rate as the connections arrive at the rate limitor.
For the other three schemes, however, the rate limits in effect imposed on legitimate traffic play an important
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role in the performance of the scheme.
Williamson’s imposes a strictly static rate, e.g., five distinct IPs per second, irrespective of the traffic

demand. CB allows for a dynamic traffic rate by rewarding successful connection and penalizing failed
connections. FC’s mechanism renders a curious behavior; under normal operation, legitimate traffic is
permitted through at its natural rate. As soon as infection hits, the outbound scans quickly exhausts the
available tokens and blocks further connections altogether. As a result, a rate-limited host has an all-or-
nothing behavior.

Figure 11 shows that CB outperforms both Williamson’s and FC. This is primarily due to CB’s dynam-
ically changing rates, which render a more graceful filtering scheme that permits both bursty application
behavior and temporarily abnormal-but-benign traffic patterns. As we briefly discussed in Section 5, mech-
anisms that impose a static rate can benefit from incorporating dynamic rate limits.

A related point here is the use of first-contact statistics. CB confines rate limiting to first contact packets.
Williamson’s, however, attempts to rate limit each packet. As we discussed earlier, rate limiting packets for
an established session is unnecessary and inconsistent with TCP semantic if the packets are delayed too
long. Applying rate limiting on first contact flows rather than at the packet level allows a higher throughput
of packets and potentially lower false positives.

Host vs aggregate: An issue of significance is host versus aggregate rate limiting at the subnet level. By
aggregate rate limiting, we do not mean mechanisms that implement host-level throttling at the edge (such
as CB [16]). Rather, we mean rate limiting based on aggregate traffic as seen at the edge router.

The general wisdom is that host-level throttling is more precise but is also more costly because per host
state must be maintained. Indeed, Williamson’s IP throttling, when applied at the edge, rendered visibly
higher false positives than its host-based counterpart. This is because IP contact behavior at the host-level
is more fine-grained and thus more likely to be stable. In contrast, aggregate traffic at the edge includes
hosts whose behavior may vary significantly from each other, thereby contributing to a higher error rate.
However, edge-based DNS throttling is an exception. Figure 11 shows that a carefully chosen rate limit,
e.g., 50 IPs per five seconds, yields excellent precisions for edge-based DNS throttling. It has lower false
positive and false negative rates than other host-based schemes. The fundamental reason behind this is that
DNS statistics, in particular the presence (or the lack) of IP translations, remain invariant from host to the
aggregate level.

This result is extremely encouraging, as aggregate rate limiting has a lower storage overhead and is
typically easier to deploy and maintain than host-based schemes. We note that throttling at the edge imposes
a stricter aggregate limit than the corresponding host-level scheme, therefore it can lead to a lower false
negative rate as we observed with the DNS scheme. We remind the reader that our study did not include an
analysis on processing overhead. Since edge-based schemes in general imply processing a larger amount of
data per connection, a trade-off between storage and processing overhead exists. We also note that

A final point is that edge-based throttling in itself does not defend against internal infection. One way
to protect against internal infection (and not pay the cost of host-level throttling) is to divide an enterprise
network into various cells (as suggested by Staniford [18]) and apply the aggregate throttling at the border of
each cell. Extending Whyte’s ARP-based approach [25] to rate limiting is yet another option. Presently this
work is primarily interested in mechanisms that deal with inter-network propagation. We leave the analysis
of intra-network protection as future work.

Rate Limiting vs. Others: Many worm detection mechanisms have been proposed of late [11, 24, 25].
While some detection works are built on similar principles (e.g., TRW’s failed connection statistics and
Whyte’s DNS-based detection) to rate limiting, the automated response component of rate limiting gives
rise to a slightly different set of requirements. For example, a rate limiting scheme with high false positives
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will severely disrupt network services. False positives for a detect-only scheme, while in a technical sense
indicate the performance of the detector, in practice they may amount to nothing more than mere annoyance.
As such, rate limiting and other automated response schemes have a more stringent error margin. Further,
many detection schemes attempt to make host-level, coarse-grain decisions, i.e., a host is either infected
or not. Rate limiting attempts to delineate malicious applications from legitimate ones so as to permit
more fine-grained traffic filtering. As such, we find it beneficial to constrain our analysis to rate limiting
mechanisms and not contrast explicitly with detection mechanisms in this work.

10 Summary

A number of rate limiting schemes have been recently been proposed to mitigate random scanning worms.
In this paper, we present an empirical analysis of the different schemes, using real traffic and attack traces.
We evalutate and contrast the false positive and false negative rates for each scheme. Our analysis reveals
these high-level insights. First, DNS behavior-based rate limiting renders by far the most accurate results.
Second, it is feasible to implement effective rate limiting on aggregate traffic at the network border, as
indicated by the DNS analysis. This is encouraging because aggregate rate limiting alleviates the universal
participation requirement thought necessary for worm containment. Third, schemes that offer dynamic rate
restrictions in general offer lower false positive and false negative rates than those that impose static rates.

We note that the conclusions and results from this analysis are invariably affected by the particulars of
our trace data. We plan to further our study by including other independent data sets. Other future work
of interest includes designing streaming algorithms for worm detection and rate limiting to improve upon
current results.
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