Raising the Bar for Using GPUs in Software Packet Processing

Anuj Kalia, Dong Zhou, Michael Kaminsky*, and David G. Andersen
Carnegie Mellon University and *Intel Labs

Abstract

Numerous recent research efforts have explored the use
of Graphics Processing Units (GPUs) as accelerators for
software-based routing and packet handling applications,
typically demonstrating throughput several times higher
than using legacy code on the CPU alone.

In this paper, we explore a new hypothesis about such
designs: For many such applications, the benefits arise
less from the GPU hardware itself as from the expression
of the problem in a language such as CUDA or OpenCL
that facilitates memory latency hiding and vectorization
through massive concurrency. We demonstrate that in sev-
eral cases, after applying a similar style of optimization to
algorithm implementations, a CPU-only implementation
is, in fact, more resource efficient than the version running
on the GPU. To “raise the bar” for future uses of GPUs
in packet processing applications, we present and eval-
uate a preliminary language/compiler-based framework
called G-Opt that can accelerate CPU-based packet han-
dling programs by automatically hiding memory access
latency.

1 Introduction

The question of matching hardware architectures to net-
working requirements involves numerous trade-offs be-
tween flexibility, the use of off-the-shelf components, and
speed and efficiency. ASIC implementations are fast, but
relatively inflexible once designed, and must be produced
in large quantities to offset the high development costs.
Software routers are as flexible as code, but have compar-
atively poor performance, in packets-per-second (pps), as
well as in cost (pps/$) and energy efficiency (pps/watt).
Both ends of the spectrum are successful: Software-based
firewalls are a popular use of the flexibility and affordabil-
ity of systems up to a few gigabits per second; commodity
Ethernet switches based on high-volume ASICs achieve
seemingly unbeatable energy and cost efficiency.

In the last decade, several potential middle grounds
emerged, from network forwarding engines such as the
Intel IXP, to FPGA designs [12], and, as we focus on in
this paper, to the use of commodity GPUs. Understanding
the advantages of these architectures, and how to best
exploit them, is important both in research (software-

based implementations are far easier to experiment with)
and in practice (software-based approaches are used for
low-speed applications and in cases such as forwarding
within virtual switches [13]).

Our goal in this paper is to advance understanding of
the advantages of GPU-assisted packet processors com-
pared to CPU-only designs. In particular, noting that
several recent efforts have claimed that GPU-based de-
signs can be faster even for simple applications such as
IPv4 forwarding [23, 43, 31, 50, 35, 30], we attempt to
identify the reasons for that speedup. At the outset of this
work, we hypothesized that much of the advantage came
from the way the GPUs were programmed, and that less
of it came from the fundamental hardware advantages
of GPUs (computational efficiency from having many
processing units and huge memory bandwidth).

In this paper, we show that this hypothesis appears
correct. Although GPU-based approaches are faster than
a straightforward implementation of various forwarding
algorithms, it is possible to transform the CPU implemen-
tations into a form that is more resource efficient than
GPUs.

For many packet processing applications, the key ad-
vantage of a GPU is not its computational power, but that
it can transparently hide the 60-200ns of latency required
to retrieve data from main memory. GPUs do this by
exploiting massive parallelism and using fast hardware
thread switching to switch between sets of packets when
one set is waiting for memory. We demonstrate that in-
sights from code optimization techniques such as group
prefetching and software pipelining [17, 51] apply to typ-
ical CPU packet handling code to boost its performance.
In many cases, the CPU version is more resource efficient
than the GPU, and delivers lower latency because it does
not incur the additional overhead of transferring data to
and from the GPU.

Finally, to make these optimizations more widely us-
able, both in support of practical implementations of soft-
ware packet processing applications, and to give future
research a stronger CPU baseline for comparison, we
present a method to automatically transform data struc-
ture lookup code to overlap its memory accesses and com-
putation. This automatically transformed code is up to
1.5-6.6x faster than the baseline code for several common

| PCI Express 3.0 Host Interface |
SM 1 SM 2 SM 3 SM 4
ENEEE EEEEE EEEEN EEEEE
EEEEE EEEEE EEEEE EEEEE
ANEEE RN e EEEE.
| L2 cache |
| Memory Controller | | Memory Controller | | Memory Controller |

Figure 1: Simplified architecture of an NVIDIA GTX 650. The
global memory is not shown.

lookup patterns, and its performance is within 10% of
our hand-optimized version. By applying these optimiza-
tions, we hope to “raise the bar” for future architectural
comparisons against the baseline CPU-based design.

2 Strengths and weaknesses of
GPUs for packet processing

In this section, we first provide relevant background on
GPU architecture and programming, and discuss the rea-
sons why previous research efforts have used GPUs as
accelerators for packet processing applications. Then,
we show how the fundamental differences between the
requirements of packet processing applications and con-
ventional graphics applications make GPUs less attractive
for packet processing than people often assume. Through-
out this paper, we use NVIDIA and CUDA’s terminology
for GPU architecture and programming model, but we
believe that our discussion and conclusions apply equally
to other discrete GPUs (e.g., GPUs using OpenCL).

2.1 GPU strengths: vectorization and
memory latency hiding

A modern CUDA-enabled GPU (Figure 1) consists of a
large number of processing cores grouped into Streaming
Multiprocessors (SMs). It also contains registers, a small
amount of memory in a cache hierarchy, and a large global
memory. The code that runs on a GPU is called a kernel,
and is executed in groups of 32 threads called warps.
The threads in a warp follow a SIMT (Single Instruction,
Multiple Thread) model of computation: they share an
instruction pointer and execute the same instructions. If
the threads “diverge” (i.e., take different execution paths),
the GPU selectively disables the threads as necessary to
allow them to execute correctly.

Vectorization: The large number of processing cores
on a GPU make it attractive as a vector processor for pack-
ets. Although network packets do have some inter-packet
ordering requirements, most core networking functions
such as lookups, hash computation, or encryption can be
executed in parallel for multiple packets at a time. This

parallelism is easily accessible to the programmer through
well-established GPU-programming frameworks such as
CUDA and OpenCL. The programmer writes code for a
single thread; the framework automatically runs this code
with multiple threads on multiple processors.

Comparison with CPUs: The AVX2 vector instruction
set in the current generation of Intel processors has 256-
bit registers that can process 8 32-bit integers in parallel.
However, the programming language support for CPU-
based vectorization is still maturing [8].

Memory latency hiding: Packet processing applica-
tions often involve lookups into large data structures kept
in DRAM. Absent latency-hiding, access to these struc-
tures will stall execution while it completes (300-400
cycles for NVIDIA’s GPUs). Modern GPUs hide latency
using hardware. The warp scheduler in an SM holds up
to 64 warps to run on its cores. When threads in a warp
access global memory, the scheduler switches to a differ-
ent warp. Each SM has thousands of registers to store
the warp-execution context so that this switching does not
require explicitly saving and restoring registers.

Comparison with CPUs: Three architectural features
in modern CPUs enable memory latency hiding. First,
CPUs have a small number of hardware threads (typically
two) that can run on a single core, enabling ongoing com-
putation when one thread is stalled on memory. Unfortu-
nately, while each core can maintain up to ten outstanding
cache misses [5 1], hyperthreading can only provide two
“for free”. Second, CPUs provide both hardware and
software-managed prefetching to fetch data from DRAM
into caches before it is needed. And third, after issuing a
DRAM access, CPUs can continue executing independent
instructions using out-of-order execution. These features,
however, are less able to hide latency in unmodified code
than the hardware-supported context switches on GPUs,
and leave ample room for improvement using latency-
hiding code optimizations (Section 3).

2.2 GPU weaknesses: setup overhead and
random memory accesses

Although GPUs have attractive features for accelerating
packet processing, two requirements of packet processing
applications make GPUs a less attractive choice:

Many networking applications require low latency.
For example, it is undesirable for a software router in
a datacenter to add more than a few microseconds of la-
tency [20]. In the measurement setup we use in this paper,
the RTT through an unloaded CPU-based forwarder is
16us. Recent work in high-performance packet process-
ing reports numbers from 12 to 40us [32, 51].
Unfortunately, merely communicating from the CPU
to the GPU and back may add more latency than the
total RTT of these existing systems. For example, it
takes ~ 15us to transfer one byte to and from a GPU,

and ~ 5Sus to launch the kernel [33]. Moreover, GPU-
accelerated systems must assemble large batches of pack-
ets to process on the GPU in order to take advantage of
their massive parallelism and amortize setup and transfer
costs. This batching further increases latency.

Networking applications often require random mem-
ory accesses into data structures, but the memory subsys-
tem in GPUs is optimized for contiguous access. Under
random accesses, GPUs lose a significant fraction of their
memory bandwidth advantage over CPUs.

We now discuss these two factors in more detail. Then,
keeping these two fundamental factors in mind, we per-
form simple experiments through which we seek to an-
swer the following question: When is it beneficial to
offload random memory accesses or computation to a
GPU?

2.3 Experimental Setup

We perform our measurements on three CPUs and three
GPUs, representing the low, mid, and high end of the
recent CPU and GPU markets. Table 1 shows their rel-
evant hardware specifications and cost. All prices are
from http://www.newegg.com as of 9/2014. The K20
connects to an AMD Opteron 6272 socket via PCle 2.0
x16, the GTX 980 to a Xeon E5-2680 via PCle 2.0 x16,
and the GTX 650 to an i7-4770 via PCIe 3.0 x16.

2.4 Latency of CPU-GPU communication

We first measure the minimum time required to involve a
GPU in a computation—the minimum extra latency that
a GPU in a software router will add to every packet. In
this experiment, the host transfers an input array with N
32-bit integers to the GPU, the GPU performs negligible
computations on the array, and generates an output array
with the same size. To provide a fair basis for comparison
with CPUs, we explored the space of possible methods
for this CPU-GPU data exchange in search of the best,
and present results from two methods here:
Asynchronous CUDA functions: This method per-
forms memory copies and kernel launch using asyn-
chronous functions (e.g., cudaMemcpyAsync) provided
by the CUDA API. Unlike synchronous CUDA functions,
these functions can reduce the total processing time by
overlapping data-copying with kernel execution. Figure 2
shows the timing breakdown for the different functions.
We define the time taken for an asynchronous CUDA
function call as the time it takes to return control to the
calling CPU thread. The extra time taken to complete all
the pending asynchronous functions is shown separately.
Polling on mapped memory: To avoid the overhead
of CUDA functions, we tried using CUDA’s mapped mem-
ory feature that allows the GPU to access the host’s mem-
ory over PCle. We perform CPU-GPU communication
using mapped memory as follows. The CPU creates the

80 T T T T T

Host to device' gz
70 Kernel launch mzm |
60 Device to host <<

Synchronization
50 K20 :

GTX980 GTX 650 Ti h

Time (Microseconds)

B
32 1024 8192
Number of 32-bit integers (N)
Figure 2: Timing breakdown of CPU-GPU communication
with asynchronous CUDA functions.

32 1024 8192 32 1024 8192

W
o

- GTX 980, Polling

GTX 980, Memcpy
- GTX 650, Polling
L GTX 650, Memcpy ----- ;

W
o

N
[&)]

_.
(6]
-
T
'y
R4
1
}
I.)
i
1
4
A
'3
!
;
2
b
9
N
14~
AN
%
i
"
y
1
h
7
2
‘1)
rd
Y
N
L]
.
4
.

,-f/\fr

_f"/
==

0 I I I I I I I
0 200 400 600 800 1000 1200 1400
Number of 32-bit integers (N)

Time (microseconds)
nN
o

—_
o o

Figure 3: Minimum time for GPU-involvement with kernel-
polling on mapped memory.

input array and a flag in the host memory and raises the
flag when the input is ready. CUDA threads continuously
poll the flag and read the input array when they notice
a raised flag. After processing, they update the output
array and start polling for the flag to be raised again. This
method does not use any CUDA functions in the critical
path, but all accesses to mapped memory (reading the flag,
reading the input array, and writing to the output array)
that come from CUDA threads lead to PCle transactions.

Figure 3 shows the time taken for this process with
different values of N. The solid lines show the results
with polling on mapped memory, and the dotted lines
use the asynchronous CUDA functions. For small values
of N, avoiding the CUDA driver overhead significantly
reduces total time. However, polling generates a linearly
increasing number of PCle transactions as N increases,
and becomes slower than CUDA functions for N ~ 1000.
As GPU-offloading generally requires larger batch sizes to
be efficient, we only use asynchronous CUDA functions
in the rest of this work.

2.5 GPU random memory access speed

Although GPUs have much higher sequential memory
bandwidth than CPUs (Table 1), they lose a significant
fraction of their advantage when memory accesses are
random, as in data structure lookups in many packet pro-
cessing applications. We quantify this loss by measuring

http://www.newegg.com

Name # of cores Memory b/w Arch., Lithography Released Cost Random Access Rate
Xeon E5-2680 8 51.2 GB/s SandyBridge, 32nm 2012 $1,748 595 M/s

Xeon E5-2650v2 8 59.7 GB/s IvyBridge, 22nm 2013 $1,169 464 M/s

17-4770 4 25.6 GB/s Haswell, 22nm 2013 $309 262 M/s

Tesla K20 2,496 208 GB/s Kepler, 28nm 2012 $2,848 792 M/s

GTX 980 2048 224 GB/s Maxwell, 28nm 2014 $560 1260 M/s

GTX 650 Ti 768 86.4 GB/s Kepler, 28nm 2012 $130 597 M/s

Table 1: CPU and GPU specifications, and measured random access rate

the random access rate of CPUs and GPU as follows. We
create a 1 GB array L containing a random permutation
of {0,...,2?® — 1}, and an array H of B random offsets
into L, and pre-copy them to the GPU’s memory. In the
experiment, each element of H is used to follow a chain
of random locations in L by executing H[i] = L[H[i]]
D times. For maximum memory parallelism, each GPU
thread handles one chain, whereas each CPU core handles
all the chains simultaneously. Then, the random access
rate is @, where ¢ is the time taken to complete the
above process.

Table 1 shows the rate achieved for different CPUs and
GPUs with D = 10, and the value of B that gave the
maximum rate (B = 16 for CPUs, B = 2! for GPUs).!
Although the advertised memory bandwidth of a GTX
980 (224 GB/s) is 4.37x of a Xeon E5-2680, our measured
random access rate is only 2.12x. This reduction in GPU
bandwidth is explained by the inability of its memory
controller to coalesce memory accesses done by different
threads in a warp. The coalescing optimization is only
done when the warp’s threads access contiguous memory,
which rarely happens in our experiment.

2.6 When should we offload to a GPU?

Given that involving GPUs takes several microseconds,
and their random memory access rate is not much higher
than that of CPUs, it is intriguing to find out in which sce-
narios GPU-offloading is really beneficial. Here, we focus
on two widely-explored tasks from prior work: random
memory accesses and expensive computations. In the rest
of this paper, all experiments are done on the E5-2680
machine with the GTX 980 GPU.

2.6.1 Offloading random memory accesses

Lookups in pointer-based data structures such as
IPv4/IPv6 tries and state machines follow a chain of
mostly random pointers in memory. To understand the
benefit of offloading these memory accesses to GPUs, we
perform the experiment in Section 2.5, but include the
time taken to transfer H to and from the GPU. H represents
a batch of header addresses used for lookups in packet
processing. We set B (the size of the batch) to 8192—
slightly higher than the number of packets arriving in
100us on our 40 Gbps network. We use different values

The K20’s rate increases to 1390 M/s if L is smaller than 256 MB.

of D, representing the variation in the number of pointer-
dereferencing operations for different data structures.

Figure 4a plots the number of headers processed per
second for the GPU and different numbers of CPU cores.
As D increases, the overhead of the CUDA function calls
gets amortized and the GPU outperforms an increasing
number of CPU cores. However for D < 4, the CPU
outperforms the GPU, indicating that offloading < 4 de-
pendent memory accesses (e.g., IPv4 lookups in Packet-
Shader [23] and GALE [50]) should be slower than using
the CPU only.

2.6.2 Offloading expensive computation

Although GPUs can provide substantially more comput-
ing power than CPUs, the gap decreases significantly
when we take the communication overhead into account.
To compare the computational power of GPUs and CPUs
for varying amounts of offloaded computation, we per-
form a sequence of D dependent CityHash32 [4] opera-
tions on a each element of H (B is set to 8192).

Figure 4b shows that the CPU outperforms the GPU
if D < 3. Computing 3 CityHashes takes ~ 40ns on
one CPU core. This time frame allows for a reasonable
amount of computation before it makes sense to switch to
GPU offloading. For example, a CPU core can compute
the cryptographically stronger Siphash [16] of a 16-byte
string in ~ 36ns.

3 Automatic DRAM latency hiding
for CPUs

The section above showed that CPUs support respectable
random memory access rates. However, achieving these
rates is challenging: CPUs do not have hardware sup-
port for fast thread switching that enables latency hiding
on GPUs. Furthermore, programs written for GPUs in
CUDA or OpenCL start from the perspective of process-
ing many (mostly)-independent packets, which facilitates
latency hiding.

The simple experiment in the previous section saturated
the CPU’s random memory access capability because of
its simplicity. Our code was structured such that each
core issued B independent memory accesses—one for
each chain—in a tight loop. The CPU has a limited win-
dow for reordering and issuing out-of-order instructions.

1core —m— 4 cores —x— GPU, 8192@--
2 cores —ye— 8 cores —g—

% 1000 T T T

Ry

%)

4

[}

o

@

[}

<

c

k]

E

-

>

Qo

'_

1 2 3 4 5 6
Number of dependent memory access (D)

(a) Offloading random memory accesses

4 cores —x— GPU, 8192@--
8 cores —g—

1core —m—
2 cores —y—

e
£ \(_\e:%f
\ll\l\—)

1000
[x:

%

—
o

Tput (million headers/s)

e

3 4 5 6
Number of hash computations (D)

(b) Offloading expensive computation

Figure 4: Comparison of CPU and GPU performance for com-
monly offloaded tasks. Note the log scale on Y axis.

When memory accesses are independent and close in
the instruction stream, the CPU can hide the latency by
issuing subsequent accesses before the first completes.
However, as described below, re-structuring and optimiz-
ing real-world applications in this manner is tedious or
inefficient.

A typical unoptimized packet-processing program oper-
ates by getting a batch of packets from the NIC driver, and
then processing the packets one by one. Memory accesses
within a packet are logically dependent on each other, and
the memory accesses across multiple packets are spaced
far apart in the instruction stream. This reduces or elim-
inates the memory latency-hiding effect of out-of-order
execution. Our goal, then, is to (automatically) restructure
this CPU code in a way that hides memory latency.

In this section, we first discuss existing techniques for
optimizing CPU programs to hide their memory access
latency. As these techniques are not suited to automati-
cally hiding DRAM latency, we present a new technique
called G-Opt that achieves this goal for programs with
parallel data structure lookups. Although the problem of
automatic parallelization and latency hiding in general
is hard, certain common patterns in packet processing
applications can be handled automatically. G-Opt hides
the DRAM latency for parallel lookups that observe the
same constraints as their CUDA implementations: inde-
pendence across lookups and read-only data structures.

1 find(entry_t xh_table, key_t x*K,value_t *V) {

2 int i;

3 for(i =0; 1 <B; 1 ++) {

4 int entry_idx = hash(K[i]);

5 // g_expensive (&h_table[entry_idx]);

6 value_t *xv_ptr = h_table[entry_idx].v_ptr;
7 if(v_ptr != NULL) {

8 // g_expensive (v_ptr);

9 V[i] = *v_ptr;
10 } else {

11 V[i] = NOT_FOUND;
12 }

13 }

14}

Figure 5: Naive batched hash table lookup.

3.1 Existing techniques for hiding memory
access latency

3.1.1 Group prefetching

Group prefetching hides latency by processing a batch
of lookups at once and by using memory prefetches in-
stead of memory accesses. In a prefetch, the CPU issues
arequest to load a given memory location into cache, but
does not wait for the request to complete. By intelligently
scheduling independent instructions after a prefetch, use-
ful work can be done while the prefetch completes. This
“hiding” of prefetch latency behind independent instruc-
tions can increase performance significantly.

A data structure lookup often consists of a series of de-
pendent memory accesses. Figure 5 shows a simple imple-
mentation of a batched hash table lookup function. Each
invocation of the function processes a batch of B lookups.
Each hash table entry contains an integer key and a pointer
to a value. For simplicity, we assume for now that there
are no hash collisions. There are three steps for each
lookup in the batch: hash computation (line 4), accessing
the hash table entry to get the value pointer (line 6), and
finally accessing the value (line 9). Within a lookup, each
step depends on the previous one: there are no indepen-
dent instructions that can be overlapped with prefetches.
However, independent instructions do exist if we consider
the different lookups in the batch [17, 51].

Figure 6 is a variant of Figure 5 with the group prefetch-
ing optimization. It splits up the lookup code into three
stages, delimited by the expensive memory accesses in
the original code. We define an expensive memory access
as a memory load operation that is likely to miss all levels
of cache and hit DRAM. The optimized code does not
directly access the hash table entry after computing the
hash for a lookup keys; it issues a prefetch for the entry and
proceeds to compute the hash for the remaining lookups.
By doing this, it does not stall on a memory lookup for
the hash table entry and instead overlaps the prefetch with
independent instructions (hash computation and prefetch
instructions) from other lookups.

1 find(entry_t *h_table, key_t *K,value_t *V) {
2 int entry_idx[B], i;

3 value_t xv_ptr[B];

4 // Stage 1: Hash-Computation

5 for(i =0; 1 <B; i ++) {

6 entry_idx[i] = hash(K[i]);

7 prefetch(&h_table[entry_idx[i]]);
8 }

9

10 // Stage 2: Access hash table entry
11 for(i =0; i <B; i ++) {

12 v_ptr[i] = h_table[entry_idx[i]].v_ptr;
13 prefetch(v_ptr[il]);

14 }

15

16 // Stage 3: Access value

17 for(i = 0; i <B; i ++) {

18 if(v_ptr[i] != NULL) {

19 V[i] = *v_ptr[il;

20 } else {

21 V[i] = NOT_FOUND;

22 }

23 }

24}

Figure 6: Batched lookup with group prefetching.

Unfortunately, group prefetching does not apply triv-
ially to general lookup code because of control divergence.
It requires dividing the code linearly into stages, which is
difficult for code with complicated control flow. Even if
such a linear layout were possible, control divergence will
require a possibly large number of masks to record the
execution paths taken by different lookups. Divergence
also means that fewer lookups from a batch will enter
later stages, reducing the number of instructions available
to overlap with prefetches.

3.1.2 Fast context switching

In Grappa [36], fast context switching among lightweight
threads is used to hide the latency of remote memory ac-
cesses over InfiniBand. After issuing a remote memory
operation, the current thread yields control in an attempt
to overlap the remote operation’s execution with work
from other threads. The minimum reported context switch
time, 38 nanoseconds, is sufficiently small compared to
remote memory accesses that take a few microseconds to
complete. Importantly, this solution (like the hardware
context switches on GPUs) is able to handle the control
divergence of general packet processing. Unfortunately,
the local DRAM accesses required in most packet pro-
cessing applications take 60-100 nanoseconds, making
the overhead of even highly optimized generic context
switching unacceptable.

32 G-Opt

We now describe our method, called G-Opt, for automati-
cally hiding DRAM latency for data structure lookup algo-
rithms. Our technique borrows from both group prefetch-
ing and fast context switching. Individually, each of these

techniques falls short of our goal: Group prefetching can
hide DRAM latency but there is no general technique to
automate it, and fast context switching is easy to automate
but has large overhead.

G-Opt is a source-to-source transformation that oper-
ates on a batched lookup function, J, written in C. It
imposes the same constraints on the programmer that lan-
guages such as CUDA [3], OpenCL, and Intel’s ISPC [§]
do: the programmer must write batch code that expresses
parallelism by granting the language explicit permission
to run the code on multiple independent inputs. G-Opt
additionally requires the programmer to annotate the ex-
pensive memory accesses that occur within F. To an-
notate the batch lookup code in Figure 5, the lines with
g_expensive hints should be uncommented, indicating
that the following lines (line 6 and line 9) contain an ex-
pensive memory access. g_expensive is a macro that
evaluates to an empty string: it does not affect the orig-
inal code, but G-Opt uses it as a directive during code
generation. The input function, F processes the batch of
lookups one-by-one as in Figure 5. Applying G-Opt to
J yields a new function G that has the same result as T,
but includes extra logic that tries to hide the latency of
DRAM accesses. Before describing the transformation in
more detail, we outline how the function § performs the
lookups.

G begins by executing code for the first lookup. In-
stead of performing an expensive memory access for this
lookup, G issues a prefetch for the access and switches
to executing code for the second lookup. This continues
until the second lookup encounters an expensive memory
access, at which point G switches to the third lookup, or
back to the first lookup if there are only two lookups in
the batch. Upon returning to the first lookup, the new
code then accesses the memory that it had previously
prefetched. In the optimal case, this memory access does
not need to wait on DRAM because the data is already
available in the processor’s L1 cache.

We now describe the transformation in more detail by
discussing its action on the batched hash table lookup
code in Figure 5. The code produced by G-Opt is shown
in Figure 7. The key characteristics of the transformed
code are:

1. Cheap per-lookup state-maintenance: There are
two pieces of state for a lookup in G. First, the
function-specific state for a lookup is maintained in
local arrays derived from the local variables in J:
the local variable named x in & is stored in x[I] for
the It" lookup in §G. Second, there are two G-Opt-
specific control variables for lookup I:g_labels[I]
stores its goto target, and g_mask’s I*" bit records
if it has finished execution.

2. Lookup-switching using gotos: Instead of stalling
on a memory access for lookup I, G issues a prefetch
for the memory address, saves the goto target at the
next line of code into g_labels[I], and jumps to
the goto target for the next lookup. We call this
procedure a “Prefetch, Save, and Switch”, or PSS. It
acts as a fast switching mechanism between different
lookups, and is carried out using the G_PSS macro
that takes two arguments: the address to prefetch
and the label to save as the goto target. G-Opt in-
serts a G_PSS macro and a goto target before every
expensive memory access; this is achieved by using
the annotations in .

3. Extra initialization and termination code: G-Opt
automatically sets the initial goto target label for all
lookups to g_label_0. Because different lookups
can take significantly different code paths in complex
applications, they can reach the label g_end in any
order. G uses a bitmask to record which lookups have
finished executing, and the function returns only
after all lookups in the batch have reached g_end.

We implemented G-Opt using the ANTLR parser gen-
erator [2] framework. G-Opt performs 8 passes over the
input function’s Abstract Syntax Tree. It converts lo-
cal variables into local arrays. It recognizes the annota-
tions in the input function and emits labels and G_PSS
macros. Finally, it deletes the top-level loop (written as a
foreach loop to distinguish it from other loops) and adds
the initialization and termination code based on the con-
trol variables. Our current implementation does not allow
pre-processor macros in the input code, and enforces a
slightly restricted subset of the ISO C grammar to avoid
ambiguous cases that would normally be resolved subse-
quent to parsing (e.g., the original grammar can interpret
foo(x); as a variable declaration of type foo).

3.3 Evaluation of G-Opt

In this section, we evaluate G-Opt on a collection of syn-
thetic microbenchmarks that perform random memory
accesses; Section 4 discusses the usefulness of G-Opt
for a full-fledged software router. We present a list of
our microbenchmarks along with their possible uses in
real-world applications below. For each microbenchmark,
we also list the source of expensive memory accesses and
computation. The speedup provided by G-Opt depends
on a balance between these two factors: G-Opt is not
useful for compute-intensive programs with no expen-
sive memory accesses, and loses some of its benefit for
memory-intensive programs with little computation.
Cuckoo hashing: Cuckoo hashing [37] is an efficient
method for storing in-memory lookup tables [19, 51].
Our 2-8 cuckoo hash table (using the terminology from
MemC3 [19]) maps integer keys to integer values. Com-

1 // Prefetch, Save label, and Switch lookup
2 #define G_PSS(addr, label) do {

3 prefetch(addr); \

4 g_labels[I] = &&label; \

5 I=(I+1)%B; \

6 goto xg_labels[I]; \

7 } while(0);

8

9 find(entry_t xh_table, key_t *K,value_t *V) {
10 // Local variables from the function
11 int entry_idx[B];

12 value_t *v_ptr[B];

13

14 // G-0Opt control variables

15 int I =0, g_mask = 0;

16 void *g_labels[B] = {g_label 0};

17

18 g_label _0:

19 entry_idx[I] = hash(K[I]);
20 G_PSS(&h_table[entry_idx[I], g label 1);
21 g_label_1:

22 v_ptr[I] = h_table[entry_idx[I]].v_ptr;
23 if(v_ptr[I] != NULL) {

24 G_PSS(v_ptr[I], g label 2);

25 g_label_2:

26 VII] = *v_ptr[I];

27 } else {

28 V[I] = NOT_FOUND;

29 }

30

31 g_end:

32 g_labels[I] = &&g_end;

33 g_mask = SET_BIT(g_mask, I);

34 if(g_mask == (1 << B) - 1) {

35 return;

36 }

37 I=(I+1) %B;

38 goto *g_labels[I];

39 }

Figure 7: Batched hash table lookup after G-Opt transforming.

putation: hashing a lookup key. Memory: reading the
corresponding entries from the hash table.

Pointer chasing: Several algorithms that operate on
pointer-based data structures, such as trees, tries, and
linked lists, are based on following pointers in memory
and involve little computation. We simulate a pointer-
based data structure with minimal computation by using
the experiment in Section 2.5. We set D to 100, emulating
the long chains of dependent memory accesses performed
for traversing data structures such as state machines and
trees. Computation: negligible. Memory: reading an
integer at a random offset in L.

IPv6 lookup: To demonstrate the applicability of G-
Opt to real-world code, we used it to accelerate Intel
DPDK'’s batched IPv6 lookup function. Applying G-Opt
to the lookup code required only minor syntactic changes
and one line of annotation, whereas hand-optimization
required significant changes to the code’s logic. We pop-
ulated DPDK’s Longest Prefix Match (LPM) structure
with 200,000 random IPv6 prefixes (as done in Packet-

7 [Baseline mmmmm 6;3 6.65 7
2 G-Opt po—— '
D 6 - Manual | — b
(2]
© 5L i
Ke)
o 4L 4
3
2 3 2:60"2:66 .
8 2 202 210 |
2
o 1 =

0

Cuckoo Ptr-Chasing IPv6 lookup

Figure 8: Speedup with G-Opt and manual group prefetching.

Shader [23]) with lengths between 48 and 64 bits,? and
used random samples from these prefixes to simulate a
worst case lookup workload. Computation: a few arith-
metic and bitwise operations. Memory: 4 to 6 accesses to
the LPM data structure.

Our microbenchmarks use 2 MB hugepages to reduce
TLB misses [32]. We use gcc version 4.6.3 with -O3. The
experiments in this section were performed on a Xeon
E5-2680 CPU with 32 GB of RAM and 20 MB of L3
cache. We also tested G-Opt on the CPUs in Table | with
similar results.

3.3.1 Speedup over baseline code

Figure 8 shows the benefit of G-Opt for our microbench-
marks. G-Opt speeds up cuckoo hashing by 2.6x, pointer
chasing (with D = 100) by 6.6x, and IPv6 lookups by 2x.
The figure also shows the speedup obtained by manually
re-arranging the baseline code to perform group prefetch-
ing. There is modest room for further optimization of the
generated code in the future, but G-Opt performs surpris-
ingly well compared to hand-optimized code: the manu-
ally optimized code is up to 5% faster than G-Opt. For
every expensive memory access, G-Opt issues a prefetch,
saves a label, and executes a goto, but the hand-optimized
code avoids the last two steps.

3.3.2 Instruction overhead of G-Opt

G-Opt’s output, G, has more code than the original in-
put function . The new function needs instructions to
switch between different lookups, plus the initialization
and termination code. G-Opt also replaces local variable
accesses with array accesses. This can lead to additional
load and store instructions because array locations are not
register allocated.

Although G-Opt’s code executes more instructions than
the baseline code, it uses fewer cycles by reducing the
number of cycles that are spent stalled on DRAM ac-
cesses. We quantify this effect in Figure 9 by measuring
the total number of instructions and the instructions-per-
cycle (IPC) for the baseline and with G-Opt. We use the
PAPI tool [9] to access hardware counters for total retired

2 This prefix length distribution is close to worst case; only 1.5%
and 0.1% of real-world IPv6 prefixes are longer than 48 and 64 bits,
respectively [14].

Baseline IPC pmm
G-Opt IPC o
T

Baseline instructions F=——=
G-Opt instructions ===

O T

o 3L 2.84 i 1
5 2.84

C

S

€

=} - -
32

(]

%) 1.41

£ 22

31l p : o
N . ¢ 59

© X 44 y

5 5 : J =

20 - '

Ptr-Chasing IPv6 lookup

Figure 9: Instruction count and IPC with G-Opt.

instructions and total cycles. G-Opt offsets the increase
in instruction count by an even larger increase in the IPC,
leading to an overall decrease in execution time.

4 Evaluation

We evaluate four packet processing applications on CPUs
and GPUs, each representing a different balance of com-
putation, memory accesses, and overall processing re-
quired. We describe each application and list its computa-
tional and memory access requirements below. Although
the CPU cycles used for packet header manipulation and
transmission are an important source of computation, they
are common to all evaluated applications and we therefore
omit them from the per-application bullets. As described
in Section 4.2, G-Opt also overlaps these computations
with memory accesses.

Echo: To understand the limits of our hardware, we use
a toy application called Echo. An Echo router forwards a
packet to a uniformly random port P based on a random
integer X in the packet’s payload (P = X mod 4). In the
GPU-offloaded version, we use the GPU to compute P
from X. As this application does not involve expensive
memory accesses, we do not use G-Opt on it.

IPv4 forwarding: We use Intel DPDK’s implemen-
tation of the DIR-24-8-BASIC algorithm [22] for IPv4
lookups. It creates a 32 MB table for prefixes with length
up to 24 bits and allocates 128 MB for longer prefixes. We
populate the forwarding table with 527,961 prefixes from
a BGP table snapshot [14], and use randomly generated
IPv4 addresses in the workload. Computation: negligible.
Memory: ~ 1 memory access on average (only 1% of our
prefixes are longer than 24 bits).

IPv6 forwarding: As described in Section 3.3.

Layer-2 switch: We use the CuckooSwitch design [51].
It uses a cuckoo hash table to map MAC addresses to
output ports. Computation: 1.5 hash-computations (on
average) for determining the candidate buckets for a des-
tination MAC address; comparing the destination MAC
address with the addresses in the buckets’ slots. Memory:
1.5 memory accesses (on average) for reading the buckets.

Named Data Networking: We use the hash-based al-
gorithm for name lookup from Wang et al. [46], but use

cuckoo hashing instead of their more complex perfect
hashing scheme. We populate our name lookup table
with prefixes from a URL dataset containing 10 million
URLs [45, 46]. We make two simplifications for our
GPU-accelerated NDN forwarding. First, because our
hash function (CityHash64) is slow on the GPU, we use
a null kernel that does not perform NDN lookups and
returns a response immediately. Second, we use fixed-
size 32-byte URLSs (the average URL size used in Zhang
et al. [49]) in the packet headers for both CPU and GPU,
generated by randomly extending or truncating the URLs
from the dataset.3

4.1 Experimental Setup

We conduct full-system experiments on a Xeon E5-2680
CPU (8 cores @2.70 GHz)-based server.* The CPU
socket has 32 GB of quad-channel DDR3-1600 DRAM in
its NUMA domain, 2 dual-port Intel X520 10 GbE NICs
connected via PCle 2.0 x8, and a GTX 980 connected via
PClIe 2.0 x16. To generate the workload for the server, we
use two client machines equipped with Intel L5640 CPUs
(6 cores @2.27 GHz) and one Intel X520 NIC. The two
10 GbE ports on these machines are connected directly to
two ports on the server. The machines run Ubuntu with
Linux kernel 3.11.2 with Intel DPDK 1.5 and CUDA 6.0.

4.2 System design

Network I/O: We use Intel’s DPDK [5] to access the
NICs from userspace. We create as many RX and TX
queues on the NIC ports as the number of active CPU
cores, and ensure exclusive access to queues. Although
the 40 Gbps of network bandwidth on the server machine
corresponds to a maximum packet rate of 59.52 (14.88 *
4) million packets per second (Mpps) for minimum sized
Ethernet frames, only 47.2 Mpps is achievable; the PCle
2.0 x8 interface to the dual-port NIC is the bottleneck
for minimum sized packets [51]. As the maximum gains
from GPU acceleration come for small packets [23], we
use the smallest possible packet size in all experiments.
GPU acceleration: We use PacketShader’s approach
to GPU-based packet processing as follows. We run a
dedicated master thread that communicates with the GPU,
and several worker threads that receive and transmit pack-
ets from the network. Using a single thread to communi-
cate with the GPU is necessary because the overhead of
CUDA functions increases drastically when called from
multiple threads or processes. The worker threads extract
the essential information from the packets and pass it
on to the master thread using exclusive worker-master

30ur CPU version does not need to make these assumptions, and
performs similarly with variable length URLs.

4The server is dual socket, but we restricted experiments to a single
CPU to avoid noise from cross-socket QPI traffic. Previous work on
software packet processing suggests that performance will scale and our
results will apply to two socket systems [32, 51, 23].

B Baseline —=_ | _A———a - S
Bol MW T 4
= 30 A o
o R R
E 20
= g
3 10 / o
s |~ i
F ool
0 1 2 3 4 5
Total number of CPU cores
(a) Echo
. 50 —
2 Baseline —s—
g 40 - G-Opt —a—
< 30 PU --e--
3
< 20
[=2) .,/
3 10 e
s | I
F o
0 1 2 3 4 5
(b) IPv4 forwarding
. 50 - ‘
3 40 Baael(ljne —a—
=3 N -Opt —a— .
s | GPU e -
:g 30 PU ----- @--eee ./.‘/'./
g 20 .//
3 10 /:' .
'-E L }/—ia—/"’
Owm
0 1 2 3 4 5 6
(c) IPv6 forwarding
. 50 - '
2 Baseline —s— =
g 40 G-Opt —m— o
2 GPU o
= 30 »
2 e —
g 10
Ky
= 0
0 1 2 3 4 5 6
(d) L2 switch
. 40 5 ‘ i |
3 aseline —a— PR
E& 30 | G G-Opt —=— . ‘,,/'
e PU (null) g oy]
g ;
2 10 A
e '/‘ o
<
= 0 -
0 1 2 3 5 6

Total number of CPU c?)res
(e) Named Data Networking
Figure 10: Full system throughput with increasing total CPU
cores, N. For the GPU, N includes the master core (throughput
is zero when N = 1 as there are no worker cores). The x-axis
label is the same for all graphs.

queues. The workers also perform standard packet pro-
cessing tasks like sanity checks and setting header fields.
This division of labor between workers and master re-
duces the amount of data that the master needs to transmit
to the GPU. For example, in IPv4 forwarding, the master
receives only one 4-byte IPv4 address per received packet.
In our implementation, each worker can have up to 4096
outstanding packets to the master.

PacketShader’s master thread issues a separate CUDA
memcpy for the data generated by each worker to transfer
it to the GPU directly via DMA without first copying
to the master’s cache. Because of the large overhead of
CUDA function calls (Figure 2), we chose not to use this
approach.

Using G-Opt for packet processing programs: In-
tel DPDK provides functions to receive and transmit
batches of packets. Using batching reduces function call
and PCle transaction overheads [23, 51] and is required
for achieving the peak throughput. Our baseline code
works as follows. First, it calls the batched receive func-
tion to get a batch of up to 16 packets from a NIC queue.
It then passes this batch to the packet processing function
J, which processes the packets one by one.

We then apply G-Opt on J to generate the optimized
function G. Unlike the simpler benchmarks in Section 3.3,
J is a full-fledged packet handler: it includes code for
header manipulation and packet transmission in addition
to the core data structure lookup. This gives § freedom
to overlap the prefetches from the lookups with this addi-
tional code, but also gives it permission to transmit pack-
ets in a different order than they were received. However,
G preserves the per-flow ordering if forwarding decisions
are made based on packet headers only, as in all the appli-
cations above.5 If so, all packets from the same flow are
“switched out” by G at the same program points, ensuring
that they reach the transmission code in order.

4.3 Workload generation

The performance of the above-mentioned packet process-
ing applications depends significantly on two workload
characteristics. The following discussion focuses on [Pv4
forwarding, but similar factors exist for the other appli-
cations. First, the distribution of prefixes in the server’s
forwarding table, and the IP addresses in the workload
packets generated by the clients, affects the cache hit rate
in the server. Second, in real-world traffic, packets with
the same IP address (e.g., from the same TCP connection)
arrive in bursts, increasing the cache hit rate.

Although these considerations are important, recall that
our primary focus is understanding the relative advantages
of GPU acceleration as presented in previous work. We
therefore tried to mimic PacketShader’s experiments that
measure the near worst-case performance of both CPUs
and GPUs. Thus, for IPv4 forwarding, we used a real-
world forwarding table and generated the IPv4 addresses
in the packets with a uniform random distribution. For
IPv6 forwarding, we populated the forwarding table with
prefixes with randomly generated content, and chose the
workload’s addresses from these prefixes using uniformly

SFor applications that also examine the packet content, the transmis-
sion code can be moved outside J for a small performance penalty.

random sampling.® We speculate that prior work may
have favored these conditions because worst-case perfor-
mance is an important factor in router design for quality
of service and denial-of-service resilience. Based on re-
sults from previous studies [3 1, 48], we also expect that
more cache-friendly (non-random) workloads are likely
to improve CPU performance more than that of GPUs.

4.4 Throughput comparison

Figure 10 shows the throughput of CPU-only and
GPU-accelerated software routers with different num-
bers of CPU cores. For Echo (Figure 10a), the CPU
achieves ~ 17.5 Mpps of single-core throughput and needs
3 cores to saturate the 2 dual-port 10 GbE NICs. The GPU-
offloaded implementation needs at least 4 worker cores,
for a total of 5 CPU cores including the master thread.
This happens because the overhead of communicating
each request with the master reduces the single-worker
throughput to 14.6 Mpps.

Figure 10b shows the graphs for IPv4 lookup. Without
G-Opt, using a GPU provides some benefit: With a budget
of 4 CPU cores, the GPU-accelerated version outperforms
the baseline by 12.5%. After optimizing with G-Opt, the
CPU version is strictly better than the GPU-accelerated
version. G-Opt achieves the platform’s peak throughput
with 4 CPU cores, whereas the GPU-accelerated version
requires 5 CPU cores and a GPU.

With G-Opt, a single core can process 16 million IPv4
packets per second, which is 59% higher than the base-
line’s single-core performance and is only 8.9% less than
the 17.5 Mpps for Echos. When using the DIR-24-8-
BASIC algorithm for IPv4 lookups, the CPU needs to
perform only ~ 1 expensive memory access in addition
to the work done in Echo. With G-Opt, the latency of
this memory access for a packet is hidden behind inde-
pendent packet-handling instructions from other packets.
As GPUs also hide memory access latency, the GPU-
accelerated version of IPv4 forwarding performs similarly
to its Echo counterpart.

For IPv6 forwarding (Figure 10c), G-Opt increases
single-core throughput by 3.8x from 2.2 Mpps to 8.4
Mpps. Interestingly, this increase is larger than G-Opt’s
2x gain in local IPv6 lookup performance (Figure 8). This
counter-intuitive observation is explained by the reduc-
tion in effectiveness of the reorder buffer for the baseline
code: Due to additional packet handling instructions, the
independent memory accesses for different packets in a
batch are spaced farther apart in the forwarding code than
in the local benchmarking code. These instructions con-
sume slots in the processor’s reorder buffer, reducing its
ability to detect the inter-packet independence.

6This workload is the worst case for DPDK’s trie-based IPv6 lookup.
PacketShader’s IPv6 lookup algorithm uses hashing and shows worst-
case behavior for IPv6 addresses with random content.

With G-Opt, our CPU-only implementation achieves
39 Mpps with 5 cores, and the platform’s peak IPv6
throughput (42 Mpps) with 6 cores. Because IPv6 lookups
require relatively heavyweight processing, our GPU-
based implementation indeed provides higher per-worker
throughput—it delivers line rate with only 4 worker cores,
but it requires another core for the master in addition
to the GPU. Therefore, using a GPU plus 5 CPU cores
can provide a 7.7% throughput increase over using just 5
CPUs, but is equivalent to using 6 CPUs.

For the L2 switch (Figure 10d), G-Opt increases the
throughput of the baseline by 86%, delivering 9.8 Mpps
of single-core throughput. This is significantly smaller
than the 17.5 Mpps for Echos because of the expensive
hash computation required by cuckoo hashing. Our CPU-
only implementation saturates the NICs with 6 cores, and
achieves 96% of the peak throughput with 5 cores. In
comparison, our GPU-accelerated L2 switch requires 5
CPU cores and a GPU for peak throughput.

For Named Data Networking, G-Opt increases single-

core throughput from 4.8 Mpps to 7.3 Mpps, a 1.5x in-
crease. With a budget of 4 CPU cores, the (simplified)
GPU version’s performance is 24% higher than G-Opt,
but is almost identical if G-Opt is given one additional
CPU core.
Conclusion: For all our applications, the throughput gain
from adding a GPU is never larger than from adding just
one CPU core. The cost of a Xeon E5-2680 v3 [6] core
(more powerful than the cores used in this paper) is $150.
In comparison, the cheapest GPU used in this paper costs
$130 and consumes 110W of extra power. CPUs are
therefore a more attractive and resource efficient choice
than GPUs for these applications.

4.5 Latency comparison

The GPU-accelerated versions of the above applications
not only require more resources than their G-Opt coun-
terparts, but also add significant latency. Each round of
communication with the GPU on our server takes ~ 20us
(Figure 2). As the packets that arrive during a round must
wait for the next round to begin, the average latency added
is 20 = 1.5 = 30us.

Our latency experiments measure the round-trip latency
at clients. Ideally, we would have liked to measure the
latency added by the server without including the latency
added by the client’s NIC and network stack. This re-
quires the use of hardware-based traffic generators [42]
to which we did not have access.”

In our experiments, clients add a timestamp to pack-
ets during transmission and use it to measure the RTT
after reception. We control the load offered by clients by

7Experiments with a Spirent SPT-N11U [42] traffic generator as the
client have measured a minimum RTT of 7-8us on an E5-2697 v2 server;
the minimum RTT measured by our clients is 16pus.

tuning the amount of time they sleep between packet trans-
missions. The large sleep time required for generating
a low load, and buffered transmission at the server [32]
cause our measured latency to be higher than our system’s
minimum RTT of 16us.

For brevity, we present our latency-vs-throughput
graphs only for Echo, and IPv4 and IPv6 forwarding.
The CPU-only versions use G-Opt. All measurements
used the minimum number of CPU cores required for
saturating the network bandwidth.

Figure 11a shows that the RTT of CPU-only Echo is
29us at peak throughput and 19.5us at low load. The
minimum RTT with GPU acceleration is 52us, which is
close to 30us larger than the CPU-only version’s mini-
mum RTT. We observe similar numbers for IPv4 and
IPv6 forwarding (Figures 11b and 11c), but the GPU ver-
sion’s latency increases at high load because of the larger
batch sizes required for efficient memory latency hiding.

5 Discussion

Other similar optimizations for CPU programs Un-
til now, we have discussed the benefit of an automatic
DRAM latency-hiding optimization, G-Opt. We now
discuss how intrusion detection systems (IDSes), an ap-
plication whose working set fits in cache [41], can benefit
from similar, latency-hiding optimizations.

We study the packet filtering stage of Snort [39], a
popular IDS. In this stage, each packet’s payload is used
to traverse one of several Aho-Corasick [15] DFAs. The
DFA represents the set of malicious patterns against which
this packet should be matched; Snort chooses which DFA
to use based on the packet header. For our experiments,
we recorded the patterns inserted by Snort v2.9.7 into its
DFAs and used them to populate our simplified pattern
matching engine. Our experiment uses 23,331 patterns
inserted into 450 DFAs, leading to 301,857 DFA states.
The workload is a tcpdump file from the DARPA Intrusion
Detection Data Sets [11].

Our baseline implementation of packet filtering passes
batches of B (~ 8) packets to a function that returns B
lists of matched patterns. This function processes packets
one-by-one. We made two optimizations to this func-
tion. First, we perform a loop interchange: Instead of
completing one traversal before beginning another, we
interweave them to give the CPU more independent in-
structions to reorder, reducing stalls from long-latency
loads from cache. Second, we collect a larger batch of
packets (8192 in our implementation), and sort it—first
by the packet’s DFA number and then by length. Sort-
ing by DFA number reduces cache misses during batch
traversal. Sorting by length increases the effectiveness
of loop interchange—similar to minimizing control flow
divergence for GPU-based traversals [41].

G-Opt, 3 cores —a— GPU, 4+1 cores -

100 100

120

80
60
40
20

80
60
40
20

Latency (us)
Latency (us)

100
80
60
40

P L
il

e

Latency (us)

20

0

10 40 10

20 30
Throughput (Mpps)
(a) Echo

20 30
Throughput (Mpps)
(b) IPv4 forwarding

0

40 50 10 30

20
Throughput (Mpps)
(c) IPv6 forwarding

40

Figure 11: Full system latency with minimum CPU cores required to saturate network bandwidth.

T N T
Baseline

[Hand-Optimized oo

Per-core throughput (Gbps)
o = N W » OO O

E5-2680 E5-2650 v2 74770
Figure 12: Pattern matching gains (no network 1/O)

Figure 12 shows that, for a local experiment with-
out network I/O, these optimizations increase single-core
matching throughput by 2.4x or more. We believe that
our optimizations also apply to the CPU-only versions
of pattern matching in GPU-accelerated IDSes including
Kargus [24] and Snap [43]. As we have only implemented
the packet filtering stage (Snort uses a second, similar
stage to discard false positives), we do not claim that
CPUs can outperform GPUs for a full IDS. However, they
can reduce the GPU advantage, or make CPU-only ver-
sions more cost effective. For example, in an experiment
with innocent traffic, Kargus’s throughput (with network
I/O) improved between 1.4x and 2.4x with GPU offload-
ing. Our pattern matching improvements offer similar
gains which should persist in this experiment: innocent
traffic rarely triggers the second stage, and network I/O
requires less than 10% of the CPU cycles spent in pattern
matching.

Additional applications We have shown that CPU
implementations can be competitive with (or outper-
form) GPUs for a wide range of applications, including
lightweight (IPv4 forwarding, Layer-2 switching), mid-
weight (IPv6 and NDN forwarding), and heavyweight
(intrusion detection) applications. Previous work explores
the applicability of GPU acceleration to a number of dif-
ferent applications; one particularly important class, how-
ever, is cryptographic applications.

Cryptographic applications, on the one hand, involve
large amounts of computation, making them seem attrac-
tive for vector processing [25, 23]. On the other hand,
encryption and hashing requires copying the full packet
data to the GPU (not just headers, for example). Since the
publication of PacketShader, the first work in this area, In-

tel has implemented hardware AES encryption support for
their CPUs. We therefore suspect that the 3.5x speedup
observed in PacketShader for IPSec encryption would be
unlikely to hold on today’s CPUs. And, indeed, 6WIND’s
AES-NI-based IPSec implementation delivers 6 Gbps per
core [1], 8x higher than PacketShader’s CPU-only IPSec,
though on different hardware.

One cryptographic workload where GPUs still have an
advantage is processing expensive, but infrequent, RSA
operations as done in SSLShader, assuming that connec-
tions arrive closely enough together for their RSA setup
to be batched.® Being compute intensive, these crypto-
graphic applications raise a second question for future
work: Can automatic vectorization approaches (e.g., In-
tel’s ISPC [8]) be used to increase the efficiency of CPU-
based cryptographic applications?

Revising TCO estimates In light of the speedups we
have shown possible for some CPU-based packet pro-
cessing applications, it bears revisiting total-cost-of-
ownership calculations for such machines. The TCO of
a machine includes not just the cost of the CPUs, but the
motherboard and chipset as well as the total system power
draw, and the physical space occupied by the machine.

Although our measurements did not include power,
several conclusions are obvious: Because the GPU-
accelerated versions required almost as many CPU cores
as the CPU-only versions, they are likely to use at least
modestly more power than the CPU versions. The GTX
980 in our experiments can draw up to 165W compared to
130W for the E5-2680’s 8 cores, though we lack precise
power draw measurements.

Adding GPUs requires additional PCle slots and lanes
from the CPU, in addition to the cost of the GPUs.
This burden is likely small for applications that require
transferring only the packet header to the GPU, such as
forwarding—but those applications are also a poor match
for the GPU. It can, however, be significant for high-
bandwidth offload applications, such as encryption and
deep packet inspection.

8And perhaps HMAC-SHAL, but Intel’s next generation “Skylake”
CPUs will have hardware support for SHA-1 and SHA-256.

Future GPU trends may improve the picture. Several
capabilities are on the horizon: CPU-integrated GPU func-
tions may substantially reduce the cost of data and con-
trol transfers to the GPU. Newer NVidia GPUs support
“GPUDirect” [7], which allows both the CPU and certain
NICs to DMA directly packets to the GPU. GPUDirect
could thus allow complete CPU-bypass from NIC to GPU,
or reduce CUDA’s overhead by letting the CPU write di-
rectly to GPU memory [29]. This technology currently
has several restrictions—the software is nascent, and only
expensive Tesla GPUs (over $1,700 each) and RDMA-
capable NICs are supported. A more fundamental and
long-term limitation of removing CPU involvement from
packet processing is that it requires entire packets, not
just headers, to be transferred to the GPU. The CPU’s
PCle lanes would then have to be divided almost equally
between NICs and GPUs, possibly halving the network
bandwidth that the system can handle.

Alternative architectures such as Tilera’s manycore de-
signs, which place over 100 cores on a single chip with
high I/O and memory bandwidth, or Intel’s Xeon Phi, are
interesting and under-explored possibilities. Although our
results say nothing about the relative efficiency of these
architectures, we hope that our techniques will enable
better comparisons between them and traditional CPUs.

Handling updates Currently, G-Opt works only for
data structures that are not updated concurrently. This
constraint also applies to GPU-accelerated routers where
the CPU constructs the data structure and ships it to the
GPU. It is possible to hide DRAM latency for updates
using manual group prefetching [32]; if updates are rel-
atively infrequent, they also can be handled outside the
batch lookup code. Incorporating updates into G-Opt is
part of future work.

6 Related Work

GPU-based packet processing Several systems have
used GPUs for IPv4 lookups absent network I/O [50, 31,

, 35], demonstrating substantial speedups. Our end-
to-end measurements that include network I/O, however,
show that there is very little room for improving IPv4
lookup performance—when IPv4 forwarding is optimized
with G-Opt, the single-core throughput drops by less than
9% relative to Echo. Packet classification requires match-
ing packet headers against a corpus of rules; the large
amount of per-packet processing makes it promising for
GPU acceleration [23, 27, 44]. GSwitch [44] is a recent
GPU-accelerated packet classification system. We believe
that the Bloom filter and hash table lookups in GSwitch’s
CPU version can benefit from G-Opt’s latency hiding,
reducing the GPU’s advantage.

CPU-based packet processing RouteBricks [18] fo-
cused on mechanisms to allocate packets to cores; its tech-

niques are now standard for making effective use of a mul-
ticore CPU for network packet handling. User-level net-
working frameworks like Intel’s DPDK [5], netmap [38],
and PF_RING [10] provide a modern and efficient soft-
ware basis for packet forwarding, which our work and
others takes advantage of. Many of the insights in this
paper were motivated by our prior work on hiding lookup
latency in CuckooSwitch [51], an L2 switch that achieves
80 Gbps while storing a billion MAC addresses.

Hiding DRAM latency for CPU programs is impor-
tant in many contexts: Group prefetching and software
pipelining has been used to mask DRAM latency for
database hash-joins [1 7], a software-based L2 switch [51],
in-memory trees [40, 28], and in-memory key-value
stores [32, 34, 26]. These systems required manual code
rewrites. To our knowledge, G-Opt is the first method to
automatically hide DRAM latency for the independent
lookups in these applications.

7 Conclusion

Our work challenges the conclusions of prior studies
about the relative performance advantages of GPUs in
packet processing. GPUs achieve their parallelism and
performance benefits by constraining the code that pro-
grammers can write, but this very coding paradigm also
allows for latency-hiding CPU implementations. Our G-
Opt tool provides a semi-automated way to produce such
implementations. CPU-only implementations of 1Pv4,
IPv6, NDN, and Layer-2 forwarding can thereby be more
resource efficient and add lower latency than GPU im-
plementations. We hope that enabling researchers and
developers to more easily optimize their CPU-based de-
signs will help improve future evaluation of both hardware
and software-based approaches for packet processing. Al-
though we have examined a wide range of applications,
this work is not the end of the line. Numerous other appli-
cations have been proposed for GPU-based acceleration,
and we believe that these techniques may be applicable
to other domains that involve read-mostly, parallelizable
processing of small requests.

Code release The code for G-Opt and the experi-
ments in this paper is available at https://github.com/
efficient/gopt.

Acknowledgements This work was supported by fund-
ing from the National Science Foundation under awards
CNS-1314721, CCF-0964474, and 1345305; and by Intel
via the Intel Science and Technology Center for Cloud
Computing (ISTC-CC). Emulab [47] and PRObBE [21]
were used for some experiments. PRObE is supported
in part by NSF awards CNS-1042537 and CNS-1042543
(PRODBE). We thank Sangjin Han and Hyeontaek Lim for
valuable comments, and David Maltz for shepherding.

https://github.com/efficient/gopt
https://github.com/efficient/gopt

References

(1]

2
3

—_—

[4
[5

— =

(6]

[7

—

[8

—

[9

—

(10]

(11]

[12]
[13]
[14]
[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

High-Performance Packet Processing Solu-
tions for Intel Architecture Platforms. http:
//www.lannerinc.com/downloads/campaigns/LIDS/
05-LIDS-Presentation-Charlie-Ashton-6WIND.
pdf.

ANTLR. http://www.antlr.org.

NVIDIA CUDA. http://www.nvidia.com/object/
cuda_home_new.html.

CityHash. https://code.google.com/p/cityhash/.
Intel DPDK: Data Plane Development Kit. http://dpdk.
org.

Intel Xeon Processor E5-2680 v3.
//ark.intel.com/products/81908/
Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_
50-GHz.

NVIDIA GPUDirect.
com/gpudirect.

http:

https://developer.nvidia.

Intel’s SPMD Program Compiler. https://ispc.github.
io.

Performance Application Programming Interface (PAPI).
http://icl.cs.utk.edu/papi/.

PF_RING: High-speed packet capture, filtering and analy-
sis. http://www.ntop.org/products/pf_ring/.
DARPA Intrusion Detection Data Sets, http:
//www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/data/.

NetFPGA, . http://yuba.stanford.edu/NetFPGA/.
Open vSwitch, . http://www.openvswitch.org.
University of Oregon Route Views Project, . http://www.
routeviews.org.

A. V. Aho and M. J. Corasick. Efficient String Matching:
An Aid to Bibliographic Search. Commun. ACM, June
1975.

J.-P. Aumasson and D. J. Bernstein. SipHash: a fast short-
input PRF. In INDOCRYPT, 2012.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving Hash Join Performance Through Prefetching.
ACM Trans. Database Syst. 2007.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In SOSP 2009.

B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and Concurrent MemCache with Dumber Caching
and Smarter Hashing. In NSDI, 2013.

R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan,
and M. Zhang. Duet: Cloud Scale Load Balancing with
Hardware and Software. In SIGCOMM 2014.

G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE:
A Thousand-Node Experimental Cluster for Computer
Systems Research.

P. Gupta, S. Lin, and M. Nick. Routing Lookups in Hard-
ware at Memory Access Speeds. In INFOCOM 1998.

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated Software Router. In SIGCOMM 2010.
M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,
Y. Yi, and K. Park. Kargus: A Highly-scalable Software-
based Intrusion Detection System. In CCS 2012.

K.Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader:

Cheap SSL Acceleration with Commodity Processors. In
NSDI 2011.

A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA Efficiently for Key-value Services. In SIGCOMM,
2014.

K. Kang and Y. S. Deng. Scalable Packet Classification
via GPU Metaprogramming. In DATE, 2011.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. De-
signing Fast Architecture-sensitive Tree Search on Modern
Multicore/Many-core Processors. ACM TODS 2011, .

S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel,
and M. Silberstein. GPUnet: Networking Abstractions for
GPU Programs. In OSDI 2014, .

T. Li, H. Chu, and P. Wang. IP Address Lookup Using
GPU. In HPSR, 2013.

Y. Li, D. Zhang, A. X. Liu, and J. Zheng. GAMT: A Fast
and Scalable IP Lookup Engine for GPU-based Software
Routers. In ANCS 2013.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In USENIX NSDI, 2014.

D. Lustig and M. Martonosi. Reducing GPU Offload
Latency via Fine-grained CPU-GPU Synchronization. In
HPCA 2013.

Y. Mao, C. Cutler, and R. Morris. Optimizing RAM-
latency Dominated Applications. In APSys 2013.

S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and
S. Zhang. IP Routing Processing with Graphic Proces-
sors. In DATE, 2010.

J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan,
and M. Oskin. Grappa: A Latency-Tolerant Runtime for
Large-Scale Irregular Applications. Technical Report UW-
CSE-14-02-01, University of Washington.

R. Pagh and F. Rodler.
Algorithms, May 2004.

L. Rizzo. Netmap: A Novel Framework for Fast Packet
1/0. In USENIX ATC 2012.

M. Roesch and S. Telecommunications. Snort -
Lightweight Intrusion Detection for Networks. 1999.

J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey.
PALM: Parallel Architecture-Friendly Latch-Free Modi-
fications to B+ Trees on Many-Core Processors. PVLDB
2011.

R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and
C. Estan. Evaluating GPUs for Network Packet Signature
Matching. In ISPASS, 2009.

Spirent. Spirent SPT-N11U. http://www.spirent.
com/sitecore/content/Home/Ethernet_Testing/

Cuckoo Hashing. Journal of

http://www.lannerinc.com/downloads/campaigns/LIDS/05-LIDS-Presentation-Charlie-Ashton-6WIND.pdf
http://www.lannerinc.com/downloads/campaigns/LIDS/05-LIDS-Presentation-Charlie-Ashton-6WIND.pdf
http://www.lannerinc.com/downloads/campaigns/LIDS/05-LIDS-Presentation-Charlie-Ashton-6WIND.pdf
http://www.lannerinc.com/downloads/campaigns/LIDS/05-LIDS-Presentation-Charlie-Ashton-6WIND.pdf
http://www.antlr.org
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://code.google.com/p/cityhash/
http://dpdk.org
http://dpdk.org
http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://ispc.github.io
https://ispc.github.io
http://icl.cs.utk.edu/papi/
http://www.ntop.org/products/pf_ring/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://yuba.stanford.edu/NetFPGA/
http://www.openvswitch.org
http://www.routeviews.org
http://www.routeviews.org
http://www.spirent.com/sitecore/content/Home/Ethernet_Testing/Platforms/11U_Chassis
http://www.spirent.com/sitecore/content/Home/Ethernet_Testing/Platforms/11U_Chassis

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(501

[51]

Platforms/11U_Chassis.

W. Sun and R. Ricci. Fast and Flexible: Parallel Packet
Processing with GPUs and Click. In ANCS 2013.

M. Varvello, R. Laufer, F. Zhang, and T. Lakshman. Multi-
Layer Packet Classification with Graphics Processing
Units. In CoNEXT, 2014.

Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu,
W. Meng, H. Dai, X. Tian, Z. Xu, H. Wu, and D. Yang.
Wire Speed Name Lookup: A GPU-based Approach. In
NSDI 2013.

Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang,
and B. Liu. Fast name lookup for Named Data Networking.
In IWQoS, 2014.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems
and Networks. In OSDI, 2002.

T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and
L. Mathy. Guarantee IP Lookup Performance with FIB
Explosion. In SIGCOMM, 2014.

T.Zhang, Y. Wang, T. Yang, J. Lu, and B. Liu. NDNBench:
A benchmark for Named Data Networking lookup. In
GLOBECOM, 2013.

J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu. Exploit-
ing Graphics Processors for High-performance IP Lookup
in Software Routers. INFOCOM, 2011.

D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. An-
dersen. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In CoNEXT, 2013.

http://www.spirent.com/sitecore/content/Home/Ethernet_Testing/Platforms/11U_Chassis

	Introduction
	Strengths and weaknesses of GPUs for packet processing
	GPU strengths: vectorization and memory latency hiding
	GPU weaknesses: setup overhead and random memory accesses
	Experimental Setup
	Latency of CPU-GPU communication
	GPU random memory access speed
	When should we offload to a GPU?
	Offloading random memory accesses
	Offloading expensive computation

	Automatic DRAM latency hiding for CPUs
	Existing techniques for hiding memory access latency
	Group prefetching
	Fast context switching

	G-Opt
	Evaluation of G-Opt
	Speedup over baseline code
	Instruction overhead of G-Opt

	Evaluation
	Experimental Setup
	System design
	Workload generation
	Throughput comparison
	Latency comparison

	Discussion
	Related Work
	Conclusion

