Computing for Development A New High-Impact Research Area

Lakshminarayanan Subramanian NYU

Joint work with many CATER (NYU), NeWS(NYU), TIER(Berkeley)

Sustainable Development

- Sustainable Development Theories:
 - Jeffrey Sachs: End of Poverty
 - Bill Easterly: Elusive Quest for Growth
 - C.K. Prahlad: Fortune at the Bottom of the Pyramid
 - Amartya Sen: Development as Freedom
 - Paul Collier: The Bottom Billion
- Commonality: "Rural Empowerment critical to sustainable development"

"Appropriate Technology a potential enabling factor to empower rural markets"

The Untapped Rural Market

- Dharavi: Largest Slum in India
 - High cost of being Poor!
 - 85% have a TV
 - 50% have a pressure cooker
 - 21% have a telephone
 - ... but can't afford a house
- In Bangladesh:
 - Poorest devote 7 percent income to communications (GrameenPhone)
- These are valid markets...

Enabling Rural Markets

- The Cellular Revolution
 - 70% own a phone/SIM in Africa
- Mpesa, Gcash Mobile Microfinance
 - 1 million transaction/days in Kenya
- Aravind Telemedicine Network
 - Telemedicine services for 500,000 patients/year
- Digital Green + Digital Study Hall
 - Teaching Farmers and Students using Recorded Video
- eSoko
 - A popular mobile marketplace

Aravind Telemedicine Network

Computing for Development

- Focus: Design, implementation and evaluation of new computing innovations that enable global social and economic development
- First world technology a bad fit!
- Hardest Challenge: Identifying the "right problem"
- Key requirements for technology adoption
 - Locally appropriate
 - Cost-effective
 - Easy to use
 - Extremely robust

The Hard Challenges!

- Need for Cost-effective solutions
 - Minimalistic Computing: Design with minimal resources
- Low-cost high-bandwidth connectivity
- Appropriate Design + Accessible Technologies
- Reliability + Sustainable Power
- The Language Barrier
- And many more....

Challenges encompass several areas of CS

SIGDev

- Proposed new SIG, in "Computation for development"
- Areas:
 - Networks, Systems, Security
 - HCI and Applications
 - AI, NLP, Data mining, Speech, Vision
- Starts this year with DEV 2010
 - http://dev2010.news.cs.nyu.edu
 - December 17-18,2010

Rest of the talk

- Connectivity for the next billion
- Next generation mobile services
- Web architecture for developing regions

WiRE Architecture

The WiRE vision

- Extremely cheap focused connectivity
 - At least 10 Mbps connectivity
 - Voice calls < 0.1 cents/minute
- Every user owns a cheap mobile device
 - The go-to device for communications, information access and business transactions
- All devices are solar-powered
- Network management should be made easy
- Enable vibrant rural markets with mobile devices, cheap connectivity and next-generation mobile services

WiRE Node Architecture

Challenges

- Physical layer
 - Steerable antennas, better radios, 802.11n?
- MAC layer
 - Combinational wireless network challenges
- Network layer
 - Naming, addressing, routing
- Robustness
 - Power, maintenance
- Application layer
 - Security, End-to-end performance

WiFi-based Long Distance Networks

- WiLD links use *standard 802.11* radios
- Longer range up to **150km**
 - Directional antennas (24dBi)
 - Line of Sight (LOS)
- Why choose **WiFi**:
 - Low cost of \$500/node
 - Volume manufacturing
 - No spectrum costs
 - Customizable using open-source drivers
 - Good datarates
 - 11Mbps (11b), 54Mbps (11g)

New World Record – 382 Kms Pico El Aguila, Venezuela Elev: 4200 meters

Problem with 802.11: ACKs

- Low utilization
 - Large propagation delays
 - Stop & wait inefficient
 - RTS/CTS makes it worse

- ACK timeouts
 - ACK doesn't arrive in time
 - Retransmissions until retry limit reached

Inter-Link Interference

Implicit Synchronization for TDMA

- Every packet is time-stamped in TX slot
- Slots are offset because of propagation delay
- We don't use explicit marker packets to signify end of TX slot*

* 2P MAC protocol (Raman et al. Mobicom '05)

Channel Loss: From external traffic

- Strong correlation between loss and external traffic
- Source (A) and interferer (I) do not hear each other

High performance Multi-radio mesh networks

A Stable ETT metric

- ETT/ETX over-estimate link performance.
- Besides average loss, other factors affect performance:
 - Loss variations
 - External load
- ROMA's link metric:

$$ETT = \frac{1}{(p_a - p_v)^* (p_a' - p_v')} \qquad L$$

Robust Routing Metric

- SIM route metric [Das et al. NSDI'08] trades off performance and overhead
- Extend SIM to account for external load and variation

$$0.2 * \sum ETT_i + 0.8 * \max(ETT_i) * (1+L)$$

Capture tx overhead

Capture bottleneck link(s) performance

Discover better routes through "investigation"

ROMA can utilize many available channels to improve aggregate throughput

Reliable Power

Poor Quality Power

Spikes and Swells:

- Lost 50 power adapters
- Burned 30 PoE ports

Low Voltages:

- Incomplete boots
- HW watchdog fails

Frequent Fluctuations:

- CF corruptions
- Battery Damage

Reliable Solar Power

Installations in Ethiopia

Installations in Ethiopia

Solar panel monitoring system

Low-cost Solar Power controller

Operational Results

Rest of the talk

- Connectivity for the next billion
- Next generation mobile services
- Web architecture for developing regions

Need for SMS apps?

- In many developing regions a data plan is not accessible
- No cellular data network
- Data plans are expensive
- Fancy phones are costly
- Deployable immediately

Ecosystem of SMS/Voice Services

International AIDS Vaccine Initiative

SMS stack

Search	Drug	Medical
service (SMSFind)	Tracking (Epothecary)	Records (ELMR)
(, , , , , , , , , , , , , , , , , , , ,	, , ,

SMS AppStore

Structured Records

Compression + Reliability layer

SMS channel

SMSFind – SMS Search

Different from Q/A Systems

SMSFind	Q/A Systems
Unstructured queries	Structured queries
SMS/Mobile queries	Typically manually generated or search engine queries
Document corpus is a function of the query (dynamic, noisy)	Corpus is typically fixed and much smaller
Output is a 140 byte snippet answer	Output is a document, short answer, or summary

SMSFind Algorithm

- Problem: Given a <query, topic>, get all web search result pages, and look for the appropriate 140 byte answer (snippet)
- Intuition: Answer is somewhere in the search result pages, use the topic as a hint
- Algorithm Key Steps:
 - Extract candidate snippets, n-grams
 - Score and rank n-grams
 - Rank snippets using n-gram score

Main Result

System, Input	% Correct
SMSFind (All queries)	57.3%
Google SMS (All Queries)	9.5%

Pilot covering 2000-3000 people in Nairobi, Kenya

Hermes: Data over Voice Channels

- Scarce / expensive data connectivity
- Ubiquitous cellular connectivity
 - Voice and SMS services.
 - No data connectivity. Why?
 - Cost per bit for SMS is very high.
- Can we modulate data on sounds and send it over a voice call?
 - Functionally like a modem, perhaps?

Cellular Voice Channels

10110

Hermes: Protocol Stack

All algorithms should be simple!

Modulation

Algorithm 1 Convert binary data to sound signals to be sent over a voice call.

Given: base frequency f_{base} , delta frequency δ . $f = f_{base}$ for each bit b in the input string do if b = 0 then $f = f - \delta$ else $f = f + \delta$ end if Generate a sinusoid of frequency fend for

Demodulation

Algorithm 2 Convert received sound signals back into binary data.

```
Given: Input sound signal.

for each sinusoid in the input sound signal do

Let f_{curr} = frequency of current sinusoid

Let f_{prev} = frequency of previous sinusoid

if f_{curr} \leq f_{prev} then

Output 0

else

Output 1

end if

end for
```

1:2 Transcoding $0 \rightarrow 01$ $1 \rightarrow 10$

Input	0	1	1	0	0
Output	01	10	10	01	01

What does this give us?

- Fixed fundamental frequency (Voice-like)
- Operation within very narrow frequency ranges

1:2 Reverse Transcoding $01 \rightarrow 0$ $10 \rightarrow 1$

Input	01	10	10	01	01
Output	0	1	1	0	0

- What about error detection?
 - Bit flips?
 - Insertions/deletions?

Performance: Raw Performance

	$ f_{base}(Hz)$	$\delta({ m Hz})$	BER
$AT\&T \rightarrow AT\&T$	2200	480	1×10^{-5}
T -Mobile \rightarrow T-Mobile	2400	640	1×10^{-5}
$AT\&T \rightarrow T-Mobile$	2170	470	1×10^{-5}
$T-Mobile \rightarrow AT\&T$	2130	640	1×10^{-5}

Data Rate =
$$f_{base} * 0.4$$

Rest of the talk

- Connectivity for the next billion
- Next generation mobile services
- Web architecture for developing regions

Web Page Size

Growth of Average Web Page Size and Number of Objects

2Mbps Connection

RuralCafe: Intermittent Web Browsing

RuralCafe User Interface

//www.suralcafe.net/		- D Go Lin
	Ruralcafe Homepage	
Satisfied Requests: 1 of	Current Query: "brad pit" 1 Related Queries: "brad pitt" - 238452 occurences	brad pit [ADD QUERY TO QUEUE]
	IRFERESHI	
# Query/Page Requ	est Status/ETA	Options
1. angelina jolie	COMPLETED	[REMOVE]
	RuralC	afe

Positive user experiences from a deployment at Amrita University, India

The Sub-packet Regime

• Number of competing flows, *N* >> 1

- Per-flow fair share, *C/N < kS/RTT*, where
 - *C* is the link capacity,
 - *k* is a small integer (e.g. less than 3),
 - S is the packet size, and
 - *RTT* is the round trip time.

Why TCP breaks down?

Fixing the TCP breakdown

- Key Idea: Avoid the Sub-packet Regime
- Solution Approach
 - Recognize flow pools
 - Use admission control to keep TCP in the good operating range < 10% loss
 - Fine grained packet scheduling
 - Avoid timeouts due to dropping retransmissions

Overall Performance Gains

Seachable Contextual Caches

- Build a cache a smart cache that understands 'topics'
 - Allow users to search the cache for the *information* they need rather than the exact URLs
 - Cache by topic hit rate rather than page hit rate
 - Make each "topic-specific" cache searchable
 - A local Google experience

Building Contextual Caches

- Identify topics
 - queries, content, domains
- Identify cached authorities for each topic
- Popularity-driven focused crawling
 - document classifier for topic
 - vertical crawl
- Local indexing per topic
- Updating topic-specific portals

- Connectivity for the Next Billion
 - WiRE, WiLDNet, Mesh networks, Reliable Power
- Next generation Mobile Services
 - SMSFind, Hermes
- Web Architecture
 - RuralCafe, Sub-packet regime, Contextual Caches

Acknowledgements

- NYU: Jay Chen, Aditya, Ashlesh, Matt, Michael, Jinyang
- Berkeley: Rabin, Sergiu, Sonesh, Eric