
The Database as a Value
Rich Hickey
CTO, Cognitect

What is Datomic?

• A functional database

• A sound model of information, with time

• Provides database as a value to applications

• Bring declarative programming to applications

• Focus on reducing complexity

DB Complexity

• Stateful, inherently

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places

Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting

Coming to Terms
Value

• An immutable
magnitude, quantity,
number... or immutable
composite thereof

Identity

• A putative entity we
associate with a series of
causally related values
(states) over time

State

• Value of an identity at a
moment in time

Time

• Relative before/after
ordering of causal values

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

Epochal Time Model

Implementing Values

• Persistent data structures

• Trees

• Structural sharing

Structural Sharing

Past
Next

Process events
(pure functions)

Observers/perception/memory

Identity
(succession of

states)

Place Model

DB
Connection

Transactions

Queries

The Database Place

F F F

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

Epochal Time Model

DB
Connection

Transactions

DB Values

Queries

2 Notions of DB

2 Notions of DB
• Database system

• facilitates the process of creating, sharing,
growing db values

• a machine

• has identity

2 Notions of DB
• Database system

• facilitates the process of creating, sharing,
growing db values

• a machine

• has identity

• Database values

• the things with which we compute

DB as Process

DB
Process

Novelty

Computation
Request

fn(?)

Result

DB as Process

DB
Process

Novelty

Computation
Request

fn(?)

Result What’s allowed?
Reproducible results?
How to use more than one db?

Functional DB Process

DB
Process

Novelty

DB
Values

Functional DB Process

DB
Process

Novelty

DB
Values Where’s computation?

Functional DB Process

DB
Process

Novelty

DB
Values Where’s computation?

Separate from process!

Functional DB
Computation

Functional DB
Computation

DB
Value

fn(db)

Result

Functional DB
Computation

DB
Value

fn(db)

Result

DB
Value

fn(db, db)

Functional DB
Computation

DB
Value

fn(db)

ResultDB
Value

DB
Value

fn(db, db)

Value Propositions

• Just data

• language-independent

• aggregate, compose

• Persistent data structures

• alias freedom

• efficient incremental ‘change’

One Structure, Many
Functions

• Datalog queries

• Other query langs

• Direct index access

• seek + scan

• Entity navigation

Speculation

• What-if scenarios

• Just drop to backtrack

• Datomic’s “with”

dbval tx-data -> dbval

• Try before you buy/transact

• Tree propagation

Time Travel

• Accretive values contain all history

• Query as-of and/or since a point in time

• Query across time

Testing

• Flowing connections around, ugh

ambient connection pool no different

• Reproducibility

• Values can easily be fabricated/generated

Stable Bases

• Same query, same results

• db permalinks!

• communicable, recoverable

• Multiple conversations about same value

//Peer
Database db = connection.db().asOf(1000);
Peer.q(aQuery, db);

//Client
GET /data/mem/test/1000/datoms?index=aevt

basis

Datomic Datalog

q(query, db1, db2, otherInputs ...);

{:find [?customer ?product]
 :where [[?customer :shipAddress ?addr]
 [?addr :zip ?zip]
 [?product :product/weight ?weight]
 [?product :product/price ?price]
 [(Shipping/estimate ?zip ?weight) ?shipCost]
 [(<= ?price ?shipCost)]]}

• dbs are arguments to query, not implicit

DB Values

• Time travel and more

• db.asOf - past, db.since - windowed

• db.with(tx) - speculative

• db.filter(pred) - slice

• mock with datom-shaped data:

[[:fred :likes "Pizza"]
 [:sally :likes "Ice cream"]]

Implementation

Traditional Database

cache

Server

Indexing
Trans-
actions

Query

App Process

I/O

App
ORM?

Caching
policy?

Strings
DDL + DMLResult Sets Serialized

???
Serialized

???

Disk

The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non

Approach

• Move to information model

• Split process and perception

• Immutable basis in storage

• Novelty in memory

Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts

• Fact - ‘an event or thing known to have
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom

• Entity/Attribute/Value/Transaction

Facts

Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places

Accretion

• Root per transaction doesn’t work

• Latest values include past as well

• The past is sub-range

• Important for information model

Datomic Architecture
App Server Process

Peer Lib

Query

Cache

App

Live
IndexComm

App Server Process
Peer Lib

Query

Cache

App

Live
IndexComm

Transactor

Indexing Trans-
actions

App Server Process
Peer Lib

Query

Cache

App

Live
IndexComm

Transactor

Indexing Trans-
actions

Data Segments

Data Segments
Redundant

segment storage

Storage Service

Segment storage

memcached cluster

(optional)

standby

Indexing

• Maintaining sort live in storage - bad

• BigTable et al:

• Accumulate novelty in memory

• Current view: mem + storage merge

• Occasional integrate mem into storage

Releases memory

Transactions and
Indexing

Index
Merging

Trans-
actions

Log Data Segments

Live
Index

Index Data Segments

Storage

Novelty

Perception

Live
Index Storage

Index Data Segments

Novelty

Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those

Process

• Assert/retract can’t express transformation

• Transaction function:

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts

Process Expansion

++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -

Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET

Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage service/server requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)

Index in Storage

Sorted
Datoms

Index Root
of key->dir

T
42

VeAETAEVT AVET LuceneEAVT

dirs

segs

Index ref

Identity

Value

What’s in a DB Value?

EAVT

t
VeAET
AEVT

db atom

nextT
asOfT

Lucene index

history

live Lucene

sinceT

index

db value
live Storage

Hierarchical
Cache

Roots

Memory index
(live window)

Storage-backed index

Identity

Value

Functional DB Benefits
• Epochal state

• Coordination only for process

• Transactions well defined

• Functional accretion

• Freedom to relocate/scale storage, query

• Extensive caching

• Process events

Thanks for Listening!

