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What is Datomic?

• A functional database

• A sound model of information, with time

• Provides database as a value to applications

• Bring declarative programming to applications

• Focus on reducing complexity



DB Complexity

• Stateful, inherently

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places



Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting



Coming to Terms
Value

• An immutable 
magnitude, quantity, 
number... or immutable 
composite thereof

Identity

• A putative entity we 
associate with a series of 
causally related values 
(states) over time

State

• Value of an identity at a 
moment in time

Time

• Relative before/after 
ordering of causal values
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Implementing Values

• Persistent data structures

• Trees

• Structural sharing



Structural Sharing

Past
Next
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2 Notions of DB
• Database system

• facilitates the process of creating, sharing, 
growing db values

• a machine

• has identity

• Database values

• the things with which we compute
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DB as Process

DB 
Process

Novelty

Computation
Request

fn(?)

Result What’s allowed?
Reproducible results?
How to use more than one db?
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Functional DB Process

DB 
Process

Novelty

DB 
Values Where’s computation?

Separate from process!
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Value Propositions

• Just data

• language-independent

• aggregate, compose

• Persistent data structures

• alias freedom

• efficient incremental ‘change’



One Structure, Many 
Functions

• Datalog queries

• Other query langs

• Direct index access

• seek + scan

• Entity navigation



Speculation

• What-if scenarios

• Just drop to backtrack

• Datomic’s “with” 

dbval tx-data -> dbval

• Try before you buy/transact

• Tree propagation



Time Travel

• Accretive values contain all history

• Query as-of and/or since a point in time

• Query across time



Testing

• Flowing connections around, ugh

ambient connection pool no different

• Reproducibility

• Values can easily be fabricated/generated



Stable Bases

• Same query, same results

• db permalinks!

• communicable, recoverable

• Multiple conversations about same value

//Peer
Database db = connection.db().asOf(1000);
Peer.q(aQuery, db);

//Client
GET /data/mem/test/1000/datoms?index=aevt

basis



Datomic Datalog

q(query, db1, db2, otherInputs ...);

{:find [?customer ?product]
 :where [[?customer :shipAddress ?addr]
         [?addr :zip ?zip]
         [?product :product/weight ?weight]
         [?product :product/price ?price]
         [(Shipping/estimate ?zip ?weight) ?shipCost]
         [(<= ?price ?shipCost)]]}

• dbs are arguments to query, not implicit



DB Values

• Time travel and more

• db.asOf - past, db.since - windowed 

• db.with(tx) - speculative

• db.filter(pred) - slice

• mock with datom-shaped data:

[[:fred :likes "Pizza"]
 [:sally :likes "Ice cream"]]



Implementation



Traditional Database
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The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non



Approach

• Move to information model

• Split process and perception

• Immutable basis in storage

• Novelty in memory



Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts



• Fact - ‘an event or thing known to have 
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom 

• Entity/Attribute/Value/Transaction

Facts



Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places



Accretion

• Root per transaction doesn’t work

• Latest values include past as well

• The past is sub-range

• Important for information model



Datomic Architecture
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Indexing

• Maintaining sort live in storage - bad

• BigTable et al:

• Accumulate novelty in memory

• Current view: mem + storage merge

• Occasional integrate mem into storage

Releases memory



Transactions and 
Indexing
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Perception

Live 
Index Storage

Index Data Segments

Novelty



Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those



Process

• Assert/retract can’t express transformation

• Transaction function: 

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts



Process Expansion

++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -



Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET



Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage service/server requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)



Index in Storage
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What’s in a DB Value?

EAVT
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live Storage
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Functional DB Benefits
• Epochal state

• Coordination only for process

• Transactions well defined

• Functional accretion

• Freedom to relocate/scale storage, query

• Extensive caching

• Process events



Thanks for Listening!


