original: April 17th, 2013 this version: Oct 2013

Omega: flexible, scalable schedulers for large compute clusters

Google

Malte Schwarzkopf (University of Cambridge Computer Lab) Andy Konwinski (UC Berkeley) Michael Abd-El-Malek (Google) John Wilkes (Google)

We own and operate data centers around the world

http://www.google.com/about/datacenters/inside/locations/

Tasks

Machines

Increasing cluster sizes

Growing job arrival rates

why is this a problem?

why is this a problem?

- hard to diversify
- code growth
- scalability bottleneck

static partitioning

- poor utilization
- inflexible

Т

I.

- hoarding
- information hiding

e.g. UCB Mesos [NSDI 2011]

how does omega work?

how does omega work?

how does omega work?

EuroSys 2013

overview

1) intro & motivation

- 2) workload characterization 🛑
- 3) comparison of approaches
- 4) trace-based simulation
- 5) flexibility case study

workload: batch/service split

Batch

Service

workload: batch/service split

resource seconds [i.e. resource job runtime in sec.]

TAKEAWAY

Most jobs are batch, but most resources are consumed by service jobs.

Jobs/tasks: counts CPU/RAM: resource seconds [i.e. resource job runtime in sec.]

Google

workload: job runtime distributions

workload: batch/service split

Batch jobs

Service jobs

80th %ile runtime

80th %ile inter-arrival time

4-7 sec.

2-15 min.

overview

1) intro & motivation

- 2) workload characterization
- 3) comparison of approaches 🛑
- 4) trace-based simulation
- 5) flexibility case study

methodology: simulation

simulation using empirical workload parameters distributions

Code available:

http://code.google.com/p/cluster-scheduler-simulator

parameters

Scheduler decision time

Google

Why might scheduling take 60 seconds?

- Large jobs (tens of thousands of tasks)
- Optimization algorithms (constraints, bin packing with knock-on preemption)
- Picky jobs in a full cluster
- Monte Carlo simulations (fault tolerance)

Topology-aware scheduling for concurrent outages

a fault tree

Google

Topology-aware scheduling for concurrent outages

Topology-aware scheduling for concurrent outages

 a fault tree a partially redundant power nodes fault DAG these machines have redundant power machines (#7 is broken) assignment of N tasks + k spares tasks to machines (N=4, k=1)

Google

- real fault, or lost touch?
- time to detect vs. false positives?
- multiple information sources for correlated failures?

Experiment 1:

How do does the shared-state design compare with other architectures?

Experiment details:

- all clusters, 7 simulated days
- 2 schedulers
- varying **Service** scheduler

monolithic, uniform decision time (single logic)

- 1. Green receives offer of all available resources.
- 2. Blue's task finishes.
- 3. Blue receives tiny offer.
- 4. Blue cannot use it.
- [repeat many times]
- 5. Green finishes scheduling.
- 6. Blue receives large offer.

By now, it has given up.

mesos

omega, no optimizations

TAKEAWAY

The Omega shared-state model performs as well as a (complex) monolithic multi-path scheduler.

Experiment 2: Does the shared-state design scale to many schedulers?

Experiment details:

- cluster B, 7 simulated days
- 2 schedulers
- varying job arrival rate and number of schedulers

scaling to many schedulers

overview

1) intro & motivation

- 2) workload characterization
- 3) comparison of approaches
- 4) trace-based simulation 🛑
- 5) flexibility case study

	lightweight simulator	high-fidelity simulator
machines	homogeneous	real-world
job parameters	empirical distribution	workload trace
constraints	not supported	supported
scheduling algorithm	random first fit	Google algorithm
runtime	fast (24h ~ 5min)	slow (24h ≃ 2h)

Experiment 3:

How much scheduler interference do we see with real Google workloads?

Experiment details:

- cluster C, 29 days
- 2 schedulers, non-uniform decision time
- varying **Service** scheduler

conflict fraction

1. Fine-grained conflict detection

2. Incremental commits

Experiment 4:

How do the optimizations affect performance?

Experiment details:

- cluster C, 29 days
- 2 schedulers, non-uniform decision time
- varying **Service** scheduler

TAKEAWAY

We can make simple improvements that significantly improve scalability.

Case study

MapReduce scheduler with opportunistic extra resources

Snapshot over 29 days

cluster C, 29 days

cluster C, 29 days

EuroSys 2013

conclusion

TAKEAWAYS

Flexibility and scale require parallelism,

parallel scheduling works *if you do it right*, and

using shared state is the way to do it right!

BACKUP SLIDES

Figure 1: YARN Architecture (in blue the system components, and in yellow and pink two applications running.)

methodology: simulation

Code available:

http://code.google.com/p/cluster-scheduler-simulator

workload: job runtime distributions

the omega approach

Shared state

- Deltas against shared state
- Easy to develop & maintain
- Heterogeneous schedulers OK

Optimistic concurrency

- No explicit coordination required
- Interference resolution (not prevention)

• Scales well

impact on conflict fraction

cluster A, 29 days

EuroSys 2013

Possible problems...

Google

- aggressive, systematically adverse workloads or schedulers
- small clusters with high overcommit

deal with using out-of-band or postfacto enforcement mechanisms