
PRO BLEM SO LV ED.

Memory Channel Storage™

Maher Amer
CTO Diablo Technologies

DIABLO TECHNOLOGIES HIGHLIGHTS

Invented MCSTM: New system architecture for non-volatile memory

Established ecosystem of industry partners, OEMs, ISVs, and end-users

Significant Time to Market Advantage

Forged strategic partnerships with IBM, VMware, and SanDisk

Strong Financial Backing: $36M from Tier-1 Investors

IT’S ALL ABOUT THE APPLICATIONS!

DATABASE/
HYPERSCALE

THE PERFORMANCE TR ADE- OFF
+ Traditionally customers have faced a suboptimal

trade-of f in storage system design:

OPTIMIZE IOPS SACRIFICE L ATENCY

OPTIMIZE L ATENCY SACRIFICE IOPS

A Painful Workaround.. .
+ When SSD “IOPS vs. Latenc y ” trade-of fs are unacceptable,
adding expensive R AM is a traditional recourse.

+ However, adding R AM can create an imbalance between
incremental performance requirements
and rapidly growing solution cost. PERFORMANCE

REQUIREMENTS

SO
LU

TI
O

N
 C

O
ST

S

FL ASH STOR AGE EVOLUTION THUS FAR

2005 2010 NOW

??
??

—
 P

C
I

SS
D

s
 b

ri
n

g
 F

L A
SH

 c
lo

se
r

 to
 t

h
e

 C
PU

—
 S

AT
A

 S
SD

s
 m

ov
e

 F
L A

SH
 i

n
to

 t
h

e
 E

n
te

rp
ri

se

2015 2000

(Decades of evolution)

MCS Persistence Layer

Enter Memory Channel Storage (MCS™)

FTL FTL FTL FTL FTL FTL FTL FTL FTL

Coherent Memory Channels

System Memory

I/O CTL FTL

Core Core Core Core Core

Core Core Core

Core Core Core Core Core

Core Core Core

Massive flash capacity exposed through the low-latency memory subsystem

Block Interface

No App/OS
Changes Required

Functionally
Replaces Existing
Solutions

Rapid
Deployment

Seamless
Integration

Storage
Acceleration

LEVERAGING
THE MCS PLATFORM: TODAY

Cache Line Interface

Apps Optimized To
Leverage MCS

New Usage Models
Enabled

Flexible
Access

Deep
Integration

Memory
Extension

LEVERAGING
THE MCS PLATFORM: TOMORROW

MCS IN SYSTEM MEMORY MAP

HARDWARE ARCHITECTURE

MCS-based DIM M

MCS Chipset Storage Subsystem

Power System: Detection / Protection

MCS Controller FL ASH
Controller

FL ASH
Controller D

D
R

3
PH

Y

A
PP

LI
C

AT
IO

N
 D

AT
A

NAND
Flash

NAND
Flash

Host
Management

Engine

Backend
Interface

SOFT WARE ARCHITECTURE

MCS Firmware
Hardware

NVM Media Management

MCS Kernel Driver BIOS/UEFI

OS Stack
Block Layer

Management
Sof tware Applications

User Space

Kernel Space

Diablo NVM
Partner OEM 3rd Party

DRIVER DETAILS

+ Plugs into block layer:
 + Bypasses SCSI/SATA on Linux
 + Emulates SCSI on Windows and VMware

+ Handles req’s asynchronously:
 + Kernel posts requests into driver’s incoming
 request queue.
 + Driver thread generates commands, posts to
 device, checks status, and copies data.

+ Handles data and control req’s:
 + 512B – 4kB native atomics
 + Up to 32kB atomics with FW aid
 + SMART logs, thermal data, stat, events etc.

Application

Block Device

Driver Thread
IO Scheduler

Cmd Gen

Status Polling

Integrity

Cache Coherency

Filesystem mmap swap future

EXAMPLE WRITE

Block
Driver

MCS
Controller

Buf fer

OS requests a write.

Driver writes data to write
buffer. (4kB data plus optional metadata)

Driver constructs a Diablo MCS
protocol command, and
writes it to a command buffer.
(encodes intent, LBA, buffer number, and E2E
integrity metadata)

Driver checks status.
Driver completes the write.

Wr Data
Buf fer

Command
Buf fer

Sta tus
Buf fer

EXAMPLE READ

Block
Driver

MCS
Controller

Buf fer

Command
Buf fer

Sta tus
Buf fer

Rd Data
Buf fer

OS requests a read.

Driver constructs a Diablo MCS
protocol command, and writes it
to a command buffer.
(encodes intent, LBA, buffer number, and E2E
integrity metadata)

Driver checks status.

Driver completes the read.

Driver reads data from read
Buffer, and validates integrity.
(4kB data plus optional metadata)

CONFIGURABLE DEVICE GROUPS

GROUP 1 GROUP 2

CPU: 4
DEVICES: C, D, E, F

CPU: 1
DEVICES: A, B

Device Grouping:
+ Configurable CPU affinity
+ 1 Thread round robins
between active devices
+ Efficiency through
driver/device locality
+ Flexible prioritization of
latency vs. CPU usage

NOTE 1 : Shown only for one NUMA node, but th is pattern
is repl icated on each node.

NOTE 2 : Devices can be combined in any combinat ion .

TECHNOLOGY COLLABORATION TO CREATE
THE FIRST MCS-ENABLED PRODUCT

+ Reference architecture design
+ DDR3 to SSD ASIC/firmware
+ Kernel and application level
software development
+ OEM System Integration and
enterprise application domain
knowledge

+ Guardian Technology for
enterprise applications
+ SSD controller & FTL firmware
development and test
+ Supply Chain and Manufacturing
with flash partner
+ System Validation

+

REDUCED LATENCY
ENABLES REAL-TIME ANALY TICS

+ THE APPLICATION HAS BECOME THE BOT TLENECK IN E-TRADING

15% Read Mix 15% Read/Write Ratio Overview

MEMORY MAPPED I/O ACCELER ATION
10 million records (20GB mmap) using synchronous msync calls

microsecond floor bins

mmap Random Write: Write Latency Histogram

oc
cu

ra
nc

es
 (

lo
g

sc
al

e)

MCS

PCIe Competitor 1

PCIeCompetitor 2

mmap Random Write: Write Latency Percentiles

percentiles

m
ic

ro
se

co
nd

 c
ei

lin
g

(l
og

 s
ca

le
)

MCS

PCIe Competitor 1

PCIeCompetitor 2

+ MCS 99th-percentile latency is 2x lower than Competitor 2
and 10x lower than Competitor 1
+ MCS has the tightest latency distribution

SYNCHRONOUS WRITES

SYNCHRONOUS READS

SYNCHRONOUS MIXED

| 10/31/2013 | Diablo Technologies

Linkbench MySQL Load

-Linkbench is CPU bound with MCS – more than 70% of CPU time is spent in USR
-Linkbench is IO bound with Fusion – more than 70% of CPU time is spent in iowait

-MCS based solution is not IO bound
-Adding more CPU power WILL increase server productivity

| 10/31/2013 | Diablo Technologies

Linkbench

MCS FOR VIRTUALIZATION

SOLVING THE I/O RESPONSE TIME ISSUE

MCS AS FLASH TIER IN SPINDLE-BASED VSAN

SUM MARY

Memory Channel Storage

+ Leverages parallelism and scalability of the
memory channel

+ Significantly reduces data persistence
latencies and improves single thread throughput

Benefits of MCS

+ 200GB to tens of TB’s of flash in standard
DIMM form factor and DDR3-CPU interface
+ Disruptive performance accelerates existing
applications and enables new flash use cases
+ Scalability facilitates economic, “right-sized”
system solutions
+ Form factor enables high-performance flash
in servers, blades, and storage arrays
+ Future proofed with ability to utilize
NAND-flash and future non-volatile memories

Near-DRAM
Response Time

Deterministic
Reliable

Performance Scalable
Form Factor,

Capacity,
Performance

THANK YOU!

mamer@diablo-technologies.com

+ Massive Flash capacity exposed through the low-latenc y memor y subsystem.

MCS SYSTEM VIEW

Leveraging the
Power of
Parallelism...

PROBLEM SOLVED.

MEMORY CHANNEL STORAGE
ECOSYSTEM

PRODUCT SALES FLOW

ENABLEMENT FLOW
Diablo

Technologies

SSD
MANUFACTURERS

OEMs
(I F D I F F E R E N T F R O M

S S D M A N U F A C T U R E R)

END
CUSTOMERS

OEMs
(F O R H W

E N A B L E M E N T / O P T I M I Z A T I O N)

STRATEGIC ISVs
(F O R S W

E N A B L E M E N T / O P T I M I Z A T I O N)

Diablo provides
MCS RDK

SSD Manufacturers and
OEMs Create And Sell
Proprietary Solutions

MEMORY CHANNEL STORAGE
REFERENCE DESIGN KITS (RDKs)

+ MCS Chipset
+ Enables hardware interface via Memory Channel
+ Includes full firmware

+ MCS Drivers
+ Manages communication between Host and MCS Module(s)
+ Diablo drivers for Windows, VMware ESXi and popular Linux distributions/kernels

+ Storage Subsystem
+ Reference Non-Volatile Memory (NVM) solution
+ Final NVM solution will vary according to SSD Manufacturer/OEM preference

Modular, Reference Solutions for Enablement/Evaluation
by SSD manufacturers, OEMs, and ISVs

Each RDK includes:

MEMORY CHANNEL STORAGE CARBON1
+ The First Commercialized MCS RDK
+ Enables NAND Flash to Directly Interface on the Memor y Channel

+ Presents as a Block I/O Device
+ Can be Managed just like Existing Storage Devices

+ DDR3 Interface, Standard RDIM M Physical Form Factor
+ Plugs into Standard DIM M Slots
+ Self-contained, No External Connections Required

STORAGE SUBSYSTEM STORAGE SUBSYSTEM
CONTROLLER

NAND NAND NAND NAND

CONTROLLER
NAND NAND NAND NAND

MCS CARBON1:
SYSTEM REQUIREMENTS & COMPATIBILITY

+ Hardware and BIOS Requirements
+ Ser ver enabled with MCS UEFI BIOS modif ications
+ DDR3-compatible processor

+ Compatible with standard JEDEC-compliant 240 -pin RDIM Ms
+ Supports DDR3-800 through DDR3-1600

+ 8GB of standard memor y (RDIM M) installed in the system
+ Follows standard ser ver DIM M population rules

+ Initial OS Support
+ Linux (RHEL, SLES)
+ Windows Ser ver
+ VMware ESXi

ANATOMY OF AN ISV ENGAGEMENT:
PERCONA

+ Percona Tested Memory Channel Storage devices
+ Percona is oldest and largest independent MySQL provider
+ Experts in MySQL and InnoDB Performance
+ Serving more than 2,000 customers in 50+ countries
+ Provide and support Percona Server MySQL distribution

+ Performance Consulting
+ MySQL archi tecture and des ign rev iews
+ Diagnosing and so lv ing MySQL per formance problems
+ Opt imizat ion of MySQL on SSD infrastructure
+ Performance Audits to ident i fy per formance improvements

+ Diablo ISV Partnering Analysis identi f ied Percona as
cr it ical partner

ANATOMY OF AN ISV ENGAGEMENT:
PERCONA

+ Percona Memory Channel Storage Testing
+ Tested Carbon 1 re ference des ign
+ Tested ULLtraDIMM Carbon 1 based product

+ Benchmark Testing
+ Sysbench Benchmarks
+ L inkbench

+ Metrics Measured
+ Reads/Writes/Mixed Workload
+ Throughput
+ Operat ions per Second
+ 95th Percent i le Response T ime

D
ri

ve
r

N
o

ti
fi

ed

NVMe* vs. MCS: Write Request Flow
Block layer provides driver with pointer

to memory buffer [Function Call]

 Driver pushes command (includes

pointer) into NVMe submission queue

[Memory Transaction]

Device uses DMA to read data from block

layer buffer into device buffer [I/O DMA]

Device pushes status into

NVMe completion queue [I/O DMA]

NVMe Write Request Flow

*NVMe flow depicted since the current PCIe flow (through SCSI stack) is commonly accepted as inefficient.

**Latencies under heavy I/O load (high IOPS)

Driver reads status from completion queue

Block layer provides driver with pointer to

memory buffer [Function Call]

Driver stages data into MCS device buffer

[Memory Transaction]

MCS Write Request Flow

Driver reads status from HW

Driver polling for status

[Memory Transaction]

Driver polls buffer to determine completion

[Memory Transaction]

NVMe

Faster

MCS
Faster

Equivalent

• Memory transactions (and transactions occurring within device hardware) are very deterministic and faster than I/O DMAs

• I/O DMAs involve the I/O controller and are non-deterministic (subject to conflicts with other system I/O)

Driver pushes command (includes pointer)

into device buffer [Memory Transaction]

R
ec

ei
ve

Po

in
te

r
St

ag
e

St
at

u
s

R
ea

d

St
at

u
s

06/05/2014

Device reads the command from NVMe

submission queue [I/O DMA]

N/A. THIS STEP DOES NOT

EXIST IN THE MCS FLOW.

(Therefore, MCS is able to begin

flash operations much sooner.)

Device updates status in HW

[Hardware Update]

Device updates status in HW

[Hardware Update]

C
o

m
m

an
d

 S
ta

gi
n

g
an

d

D
at

a
Tr

an
sf

er

N/A. THIS STEP DOES NOT

EXIST IN THE MCS FLOW.

1-2µs

Depends on
I/O load

1-2µs

<1µs

1-2µs

1-2µs

<0.5µs

<0.5µs

100s of µs ~8µs

Latency**

Latency**

1-2µs

<1µs

<0.5µs

<0.5µs

Depends on
I/O load

Depends on
I/O load

TOTAL

R
ea

d

St
at

u
s/

D
at

a

D
ri

ve
r

N
o

ti
fi

ed

C
o

m
m

an
d

 S
ta

gi
n

g
an

d
 D

at
a

Tr
an

sf
er

/
St

ag
in

g

NVMe* vs. MCS: Read Request Flow

Block layer provides driver with pointer

to memory buffer [Function Call]

 Driver pushes command (includes

pointer) into NVMe submission queue

[Memory Transaction]

Device uses DMA to read data from flash

into block layer buffer [I/O DMA]

Device pushes status into

NVMe completion queue [I/O DMA]

NVMe Read Request Flow

Driver reads status from completion queue

Block layer provides driver with pointer to

memory buffer [Function Call]

Driver reads data from MCS device

MCS Read Request Flow

Driver polling for status

[Memory Transaction]

Driver polls buffer to determine completion

[Memory Transaction]

NVMe

Faster

MCS
Faster

Equivalent

Driver pushes command (includes pointer)

into device buffer [Memory Transaction]

R
ec

ei
ve

Po

in
te

r
St

ag
e

St
at

u
s

06/05/2014

Device reads the command from NVMe

submission queue [I/O DMA]

N/A. THIS STEP DOES NOT

EXIST IN THE MCS FLOW.

(Therefore, MCS is able to begin

flash operations much sooner.)

Device updates status and data

into memory [Hardware Update]

Device updates status in HW

[Hardware Update]

N/A. THIS STEP DOES NOT

EXIST IN THE MCS FLOW.

1-2µs

Depends on
I/O load

Depends on
I/O load

1-2µs

Depends on
I/O load

~115µs

1-2µs

~125µs

Latency** Latency**

Data returned from flash and pushed into

HW core buffers [Hardware Transaction]

1-2µs

<1µs <1µs

<0.5µs

3µs

<0.5µs

<0.5µs

100s of µs

*NVMe flow depicted since the current PCIe flow (through SCSI stack) is commonly accepted as inefficient.

**Latencies under heavy I/O load (high IOPS)

• Memory transactions (and transactions occurring within device hardware) are very deterministic and faster than I/O DMAs

• I/O DMAs involve the I/O controller and are non-deterministic (subject to conflicts with other system I/O)

TOTAL

