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Who am I? 

Apache Spark committer & PMC member 
 
Software Engineer @ Databricks (ML team) 
 
Machine Learning Department @ Carnegie Mellon 
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Talk outline 

Intro 
 Apache Spark 
 Machine Learning (and graphs) in Spark 

Original implementations: RDDs 

Future implementations: DataFrames 
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• General engine for big data computing 
•  Fast & scalable 
•  Easy to use 
•  APIs in Python, Scala, Java & R 
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Apache Spark 

Spark	SQL	 Streaming	 MLlib	 GraphX	

Open source 
•  Apache Software Foundation 
•  1000+ contributors 
•  250+ companies & universities 



It’s big 
• Spark beat Hadoop’s Gray Sort record by 3x 

with 1/10 as many machines 
• Largest cluster size of 8000 Nodes (Tencent) 
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MLlib: Spark’s ML library 
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ML tasks 
Classification 
Regression 
Recommendation 
Clustering 
Frequent itemsets 

Data utilities 
Featurization 
Statistics 
Linear algebra 

Workflow utilities 
Model import/export 
Pipelines 
DataFrames 
Cross validation 

Goals 
Scale-out 
Standard library 
Extensible API 

Challenges for big data 
•  Iterative algorithms 
•  Diverse algorithmic patterns 
•  Many data types 



GraphX and GraphFrames 
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Graph algorithms 
Connected components 
PageRank 
Label propagation 
… 

Graph queries 
Vertex degrees 
Subgraphs 
Motif finding 
… 

Goals 
Scale-out 
Standard library 
Extensible API 

Challenges for big data 
•  Iterative algorithms 
•  Many (big) joins 
•  Many data types 
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Map Reduce 

master 

Resilient Distributed Datasets (RDDs) 

val myData: 
 RDD[(String, Vector)] 
myData.map { 
  _._2 * 0.5 
} 



Resilient Distributed Datasets (RDDs) 

11 



Resilient Distributed Datasets (RDDs) 
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Resiliency 
•  Lineage 
•  Caching & 

checkpointing 
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Compute gradient (Vector) 
for each row (training example) 

Aggregate 
gradient 

master 

ML on RDDs 

Broadcast 
gradient 



ML on RDDs: the good 

Flexible: GLMs, trees, matrix factorization, etc. 
 
Scalable: E.g., Alternating Least Squares on Spotify data (2014) 
•  50+ million users  x  30+ million songs 
•  50 billion ratings 
Cost ~ $10 
•  32 r3.8xlarge nodes (spot instances) 
•  For rank 10 with 10 iterations, ~1 hour running time. 
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ML on RDDs: the challenges 

Maintaining state 

Python API 

Iterator model 

Data partitioning 
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master 

Maintaining state on master 

Current 
state 
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Maintaining state in RDDs 

… 
… 
… 

Current state 



Maintaining state 
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Cons of master 
•  Single point of failure. 
•  Cannot support large state (1 billion parameters) 
Cons of RDDs 
• More complex 
•  Lineage becomes a problem à cache & checkpoint 
 
Unstated con: Developers have to choose 1 option! 
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Python API (RDD-based) 

Spark 
worker 
(JVM) 

Python 

Python 

Data stored as Python objects 
à Serialization overhead 
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Iterator model 
val rdd0: RDD[(String, Vector)] = … 

val rdd1 = rdd0.map { (name, data) => 
  (name.trim, normalizeVec(data)) 

} 

val rdd2 = rdd1.map { 

  ... 

} 
 

Arbitrary 
data types 

Black box lambda 
functions 

Iterative processing 
(especially in ML!) 

à Boxed types 
à JVM object creation & GC 
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Data partitioning: numPartitions 

Selecting numPartitions can 
be critical. 
•  Each task has overhead. 
•  Overhead / parallelism trade-off. 
 
Different numPartitions for 
different jobs: 
•  SQL: 200+ is reasonable 
•  ML: 1 per compute core 
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Data partitioning: co-partitioning 

Algorithm 
•  Join 
•  Map 
•  Iterate 

Co-partitioning is critical for 
•  ALS (matrix factorization) 
•  Graph algorithms 



ML on RDDs: the challenges 

Maintaining state (& lineage) 

Python API 

Iterator model 

Data partitioning 

23 



Talk outline 

Intro 
 Apache Spark 
 Machine Learning (and graphs) in Spark 

Original implementations: RDDs 

Future implementations: DataFrames 

24 



Talk outline 

Intro 
 Apache Spark 
 Machine Learning (and graphs) in Spark 

Original implementations: RDDs 

Future implementations: DataFrames 

25 



Spark DataFrames & Datasets 
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dept	 age	 name	

Bio	 48	 H	Smith	

CS	 34	 A	Turing	

Bio	 43	 B	Jones	

Chem	 61	 M	Kennedy	

Data grouped into 
named columns 

DSL for common tasks 
•  Project, filter, aggregate, join, … 
•  Statistics, n/a values, sketching, … 
•  User-Defined Functions (UDFs) & 

Aggregation (UDAFs) 

data.groupBy(“dept”).avg(“age”) 

Datasets: Strongly typed DataFrames 
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Catalyst query optimizer 

SQL 

DataFrame 

Dataset 

Query Plan Optimized 
Query Plan RDDs 

Catalyst 
transformations 

Abstractions of user programs 
(Trees) 



Project Tungsten 

Memory management 
•  Off-heap (Java Unsafe API) 
•  Avoid JVM GC 
•  Compressed format 
 

Code generation 
•  Rewrite chain of iterators into single code blocks 
•  Operate directly on compressed format 

28 



DataFrames in ML and Graphs 

API 
• DataFrame-based API in MLlib (spark.ml package) 
• GraphFrames (Spark package) 
 
Transformation & prediction 
 
Training 
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Python API 
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0 2 4 6 8 10 

RDD Scala 
RDD Python 

Spark Scala DF 
Spark Python DF 

Time to aggregate 10^6 Int pairs (secs) in Spark 1.4 

better 



Transformation/prediction with DataFrames 

User-Defined Types (UDTs) 
•  Vector (sparse & dense) 
• Matrix (sparse & dense) 
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User-Defined Functions (UDFs) 
•  Feature transformation 
• Model prediction 



Future work: model training 
Goal: Port all ML/graph algorithms to run on DataFrames 
for better speed & scalability. 
 
Currently: 
•  Belief propagation 
•  Connected components 
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Catalyst in ML 

What’s missing? 
•  Concept of iteration 
• Handling caching and checkpointing 

across many iterations 
• ML/Graph-specific optimizations for 

Catalyst query planner 
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Tungsten in ML 

Partly done 
•  Vector/Matrix UDTs 
• UDFs for some operations 
 
What’s missing? 
•  Code generation for critical paths 
•  Closer integration of Vector/Matrix types with Tungsten 
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OOMing 

DataFrames automatically spill to disk 
 
 à Classic pain point of RDDs 
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java.lang.OutOfMemoryError 

Goal: Smoothly scale, without custom per-algorithm optimizations 



To summarize... 
MLlib on RDDs 
•  Required custom optimizations 
 
MLlib with a DataFrame-based API 
•  Friendly API 
•  Improvements for prediction 
 
In the future 
•  Potential for even greater scaling for training 
•  Simpler for non-experts to write new algorithms 
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Get started 
Get involved 
•  JIRA  http://issues.apache.org 
•  mailing lists  http://spark.apache.org 
•  Github  http://github.com/apache/spark 
•  Spark Packages  http://spark-packages.org 
 
Learn more 
•  New in Apache Spark 2.0  

http://databricks.com/blog/2016/06/01 
•  MOOCs on EdX   http://databricks.com/spark/training 
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Try out Apache Spark 2.0 in 
Databricks Community Edition 
http://databricks.com/ce 

Many thanks to the community 
for contributions & support! 



Databricks 
Founded by the creators of Apache Spark 
 
Offers hosted service 
•  Spark on EC2 
•  Notebooks 
•  Visualizations 
•  Cluster management 
•  Scheduled jobs 
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We’re hiring! 



Thank you! 
FB group: Databricks at CMU 
databricks.com/careers 


