
Memory-Driven Computing

Kimberly Keeton

Distinguished Technologist
kimberly.keeton@hpe.com

October 20, 2016

mailto:kimberly.keeton@hpe.com


From Processor-Centric Computing…

SoC
SoC

SoC

So
C

Memory

M
em

ory

Memory

M
em

or
y Memory

+
Fabric

SoC

SoC

SoC

So
C

…to Memory-Driven Computing

©Copyright 2016 Hewlett Packard Enterprise Company



Technology trends enabling Memory-Driven Computing

– Converging memory and storage
– Byte-addressable persistent memory (NVM) replaces hard drives and 

SSDs

– Resource disaggregation leads to shared memory pool
– Fabric-attached memory pool is accessible by all compute resources
– Optical networking provides near-uniform latency
– Local volatile memory provides lower latency, high performance tier

– Distributed heterogeneous compute resources
– Moving compute closer to data

– Software
– Memory-speed persistence
– Low-latency, high BW memory/storage access
– Globally addressable, low latency access to all PM across the memory 

fabric

Physical 
Server

Physical 
Server

SoC

SoC

Local DRAM

Local DRAM

N
et

w
or

k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

©Copyright 2016 Hewlett Packard Enterprise Company



Memory-Driven Computing in context

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical 
Server

C
oh

er
en

t 
In

te
rc

on
ne

ct

N
et

w
or

k

SoC

SoC

Local DRAM

Local DRAM

SoC

SoC

Local DRAM

Local DRAM

Shared something

Physical 
Server

Physical 
Server

NVM

NVM

NVM

NVM

Memory 
Pool

©Copyright 2016 Hewlett Packard Enterprise Company



Outline

– Overview
– Memory driven systems software: OS and data management
– Memory driven data analytics: Spark for The Machine
– Memory driven programming models
– Prototypes and emulators
– Commercial memory driven computing 
– Summary

©Copyright 2016 Hewlett Packard Enterprise Company



Memory driven systems software



Traditional file systems

Separate storage address space
• Data is copied between storage and DRAM
• Block-level abstraction leads to inefficiencies
Use of page cache leads to extra copies
• True even for memory-mapped I/O
Software layers add overhead

Storage: Disks, SSDs

Traditional FS

Applications

Page cache

Block device

mmap file IO

VFS

©Copyright 2016 Hewlett Packard Enterprise Company



Non-volatile memory aware file systems

Examples
• Direct access (DAX)
• pmem.io/NVML

Low overhead access to 
persistent memory
• No page cache
• Direct access with mmap

NVM

Traditional FS

Applications

Page cache

Block device

mmap file IO

NVM FS mmu
mappings

mmap

VFS

file IO

Source: S. R Dulloor, et al. "System Software for Persistent Memory," Proc. EuroSys, 2014. 

©Copyright 2016 Hewlett Packard Enterprise Company



Linux w/
HPE Changes LinuxHPE

We plan to contribute all changes 
back to the Linux community.

Linux for The Machine

Librarian File 
System Controls

Persistent Memory Support 
Library

NVM Backed Block 
Devices

Librarian File System

Fabric-Attached Memory 
Atomics Library

Remote Virtual Memory Access
(RVMA)

RoCE/RDMA
Software

Kernel
+ 

Remainder of User Space (L4TM Core)

Your Application

Linux for The Machine

– HPE’s modifications to Linux to support
– Fabric-attached persistent memory
– Block device abstractions backed by 

persistent memory
– Kernel modifications for “flush on failure”

– Additional support for
– Fabric-attached memory atomics 

primitives to handle sharing across SoCs
– “Librarian File System” for naming and 

giving permissions to persistent memory
– Remote virtual memory access
– Configuration and management utilities

©Copyright 2016 Hewlett Packard Enterprise Company



SpaceJMP: Programming with Multiple Virtual Address Spaces
• Process has multiple virtual address spaces

• Efficient safe programming and sharing for huge memories 
• Data sharing and communication between processes
• Versioning and checkpointing
• Co-design between OS, programming languages, compilers, 

and runtimes
• Prototype implementations in BSD, Linux, and Barrelfish

I. El Hajj, et al. “SpaceJMP: Programming with Multiple Virtual Address Spaces,” Proc. Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), 2016.

©Copyright 2016 Hewlett Packard Enterprise Company



Memory-driven data management



Traditional databases

–Example: A database (write) transaction

• Traditional databases struggle 
with big & fast data

• 90% of a database transaction 
is overhead

• Memory-semantics non-volatile 
memory: up to 10x improvement

Other

Buffer manager

Latching

Locking

Logging

Btree 8.1%

21.0%

18.7%

10.2%

29.6%

12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the 
Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.

©Copyright 2016 Hewlett Packard Enterprise Company



FOEDUS: Fast optimistic engine for data unification services

–Open-source, from-scratch database engine designed to
– Manipulate data both in DRAM and NVM
– Take advantage of large multi-core machines

–Fully ACID, serializable database kernel in C++
– Can be embedded in applications as a library
– Simplified in-memory applications

–Designed to eliminate scalability bottlenecks
– Lightweight optimistic concurrency control 
– Decentralized logs are SoC-friendly
– Design maximizes NVM bandwidth and endurance

©Copyright 2016 Hewlett Packard Enterprise Company



FOEDUS: Fast optimistic engine for data unification services

©Copyright 2016 Hewlett Packard Enterprise Company



FOEDUS: Open source embedded database

– Scalable up to tens of SoCs
– Tested scale: Superdome X: 12 TB DRAM, 240 cores

– Efficiently handles datasets larger than DRAM

– Orders of magnitude faster when compared to 
state-of-the-art in-memory engines

– H. Kimura, “FOEDUS: OLTP engine for a thousand 
cores and NVRAM,” Proc. SIGMOD, 2015.

– Open source code, documentation and papers at
http://github.com/hkimura/foedus

©Copyright 2016 Hewlett Packard Enterprise Company

http://github.com/hkimura/foedus


Memory driven data analytics: 
Spark for The Machine



Spark contributions
Maximize advantages of large in-memory processing

HPE Components

Artificial Neural Networks

©Copyright 2016 Hewlett Packard Enterprise Company, 



In-memory shuffle engine
Provides efficient access to The Machine’s shared-memory architecture and NVM pool 

– Non-volatile memory based
– In-memory sort/merge
– Optimized CPU cache access

Our approach Performance Evaluation for RDD Operators

©Copyright 2016 Hewlett Packard Enterprise Company, 



Predictive Analytics
Evaluating Spark for The Machine for fast accurate prediction

– Exploit large NVM pool for data caching 

– Leverage computationally intensive 
belief propagation

– Decrease communication cost

Our approach 15x on HPE Superdome X

Fails to run

se
co

nd
s

©Copyright 2016 Hewlett Packard Enterprise Company, 



http://hortonworks.com/press-releases/hortonworks-hpe-accelerate-spark/



Memory driven programming models



Do we need separate data representations?

In-storage durability
+ Separate object and persistent formats

– Programmability and performance issues
– Translation code error-prone and insecure

In-memory durability
+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability
+ Low ld/st latencies offer high performance

– Persistent does not mean consistent!

Serialize

Deserialize

In-memory 
objects File or

database

CPU

Caches

DRAM NVM

©Copyright 2016 Hewlett Packard Enterprise Company



NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?
What if I crash here?

Crashes cause corruption, which prevents us from merely restarting the computation

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2016 Hewlett Packard Enterprise Company



Persistent memory programming – Hewlett Packard Labs

– Manage consistent updates with failure atomicity
– Handle recovery
– Support multi-threaded concurrent access

– Atlas: Persistence for lock-based, multhreaded shared memory programs
– C/C++11
– Arbitrary data structures
– Operate directly on persistent memory within critical sections (lock-based or TM-style transactions)

– Managed Data Structures (MDS) in persistent memory
– C++11/Java8
– Specific data structures
– Library mediated access with ACID transactions with configurable isolation

©Copyright 2016 Hewlett Packard Enterprise Company



Manual solution

• Need code that plays back 
undo log on restart

• Getting this to work with 
threads and locks is very hard

• Really want to optimize it
• Very unlikely application 

programmers will get it right

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVM>

accounts[to]   += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}

©Copyright 2016 Hewlett Packard Enterprise Company



Atlas solution: Consistent sections
Provide a construct that atomically updates NVM

• Updates in __atomic block 
are either completely visible 
after crash or not at all

• If updates in __atomic block 
are visible, then so are prior 
updates to persistent memory

persistent double accounts[2];
transfer(int from, int to, double amount) {

__atomic {
accounts[from] -= amount;
accounts[to]   += amount;

}
}

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory 
Consistency,” Proc. OOPSLA, 2014.

©Copyright 2016 Hewlett Packard Enterprise Company



The Atlas programming model
Ensure data consistency in persistent memory

– Programmer distinguishes persistent and transient data

– Persistent data lives in a “persistent region”
– E.g., in pseudo-file-system in NVM
– Directly mapped into process address space (no DRAM 

buffers)
– Accessed via CPU loads and stores

– Programmer writes ordinary multithreaded code
– Automatic durability support at a fine granularity, complete with 

recovery code
– Supports consistency of durable data derived from 

concurrency constructs

– Open source code available at 
https://github.com/HewlettPackard/Atlas

Persistent 
Region API 

Consistenc
y API 

Atlas 
library

User Program

Instrumented 
User Program

Persistent Data

Compile

Execute

Recover

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory 
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), 
2014.

©Copyright 2016 Hewlett Packard Enterprise Company



Managed Data Structures (MDS)
Simplify programming on persistent in-memory data

– Ease of Programming
– Programmer manages only application-level data 

structures
– MDS data structures are automatically persisted in NVM

– APIs in multiple programming languages: Java, C++
– Programmer access through references to data
– Direct reads and writes 

– Ease of Data Sharing
– Just pass a reference

– Each program treats the data as if it was local to the program

– High-level concurrency controls
– Ensure consistent data in the face of data sharing by multiple 

threads/processes

Managed Space

Process 1 Process 2

Java, C++
simultaneously

Supported data 
structures: List, 
Map, Set, Graph, 
Vector, Queue, . . .

©Copyright 2016 Hewlett Packard Enterprise Company, 



Supporting safe data sharing

Non-blocking transactions Zero-copy snapshots

Parent view

Live child view

Snapshot child view

Consumer update transactions

Business Intelligence analytics

Conflict resolution

©Copyright 2016 Hewlett Packard Enterprise Company, 



Simplified data management – Benefits to application developer

Conventional Data Formats MDS Data Formats

Disk

Filesystem

Database

Serialisation/deserialisation

Data format conversion

Disk communication latency

Server

RPC, HTTP, message passing

Data structures

Shared non-volatile memory

Local function calls

Data structures

Shorter path to 
persistence

Less code

Fewer errors

Faster development
©Copyright 2016 Hewlett Packard Enterprise Company, 



Prototypes and emulators



“Private”
memory

SoC Bridge

Fabric-attached memory

SoC + 
private 
memory

Bridge

Fabric-
attached 
memory 
(FAM)

SoC Bridge

SoC Bridge

Fabric-attached memory
“Private”
memory

©Copyright 2016 Hewlett Packard Enterprise Company



Show and tell at HPE Discover 2016

©Copyright 2016 Hewlett Packard Enterprise Company



Hardware/software co-development

The Simulated/Emulated Machine The Machine

Hardware development

Software development

©Copyright 2016 Hewlett Packard Enterprise Company



Fabric-Attached Memory Emulation for The Machine
Code for memory driven architecture

– Provides a programmer’s view of fabric 
attached memory
– QEMU virtual machines running Debian mimic 

compute nodes
– Shared memory on the host emulates fabric 

attached memory (FAM)
– IVSHMEM links guests and host

– Performant environment allows developers to
– Create code for The Machine architecture
– Modify legacy code to take advantage of The 

Machine architecture

– Open source code available at 
https://github.com/FabricAttachedMemory

Inter-VM shared memory backed by host file system for 
persistence (FAM emulation) 

QEMU
Debian
Node 1

QEMU
Debian
Node 2

QEMU
Debian
Node N

Host Debian Operating System (QEMU Hypervisor)

©Copyright 2016 Hewlett Packard Enterprise Company



Quartz: NVM Performance Emulator

–Quartz: performance emulator for NVM based on commodity hardware (DRAM) 
–Focus: modeling primary performance characteristics of NVM that affect 

application end-to-end performance
– Two performance knobs for NVM emulation: bandwidth and latency 
– Non-goals: accurate simulation of NVM features, NVM functionality, and NVM devices…

–Quartz aims to support:
– Sensitivity analysis of complex applications on future hardware

–Which ranges of latencies and bandwidth are critical for achieving good performance and scalability?
– Design questions for future machines with both DRAM and NVM

–DRAM as cache for NVM vs. DRAM and NVM as peers
–Strategies for efficient data placement

Open source code available at
https://github.com/HewlettPackard/Quartz
H. Volos, G.  Magalhaes, L. Cherkasova, J. Li. Quartz: A Lightweight Performance 
Emulator for  Persistent Memory Software. Proc. of  ACM/Usenix/IFIP Conference on 
Middleware, 2015. ©Copyright 2016 Hewlett Packard Enterprise Company, 



Commercial Memory-Driven 
Computing



HPE Integrity Superdome X

Large-scale shared memory multiprocessor
– Up to 16 processors, 384 cores

– Intel® Xeon® Processor E7 v4 and E7 v3 family

– Up to 24 TB DDR4 memory (Gen9)
– 384 DIMM slots

– 24 Mezz PCIe gen3 slots (3 per blade) for IO 
connectivity to LAN, SAN, and InfiniBand

– 18U enclosure

– https://www.hpe.com/us/en/servers/superdome.html

©Copyright 2016 Hewlett Packard Enterprise Company, 

61



HPE Persistent Memory

– HPE 8GB NVDIMM Module (782692-B21)

– HPE ProLiant Gen9 Servers Supported and Configurations
– DL360 Gen9 and DL380 Gen9 E5-2600v4 

– Ideal for accelerating databases and analytics workloads

– https://www.hpe.com/us/en/servers/persistent-memory.html

DRAM Controller

NAND Flash

©Copyright 2016 Hewlett Packard Enterprise Company









For more information...
http://www.labs.hpe.com/research/themachine/ 

– D. Chakrabarti, H. Volos, I. Roy, and M. Swift. “How Should We Program Non-volatile Memory?”, tutorial at ACM Conf. on Programming Language Design and 
Implementation (PLDI), 2016.

– I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, W. Hwu, K. Schwan, T. Roscoe, R. Achermann, and P. Faraboschi. “SpaceJMP: Programming with multiple virtual 
address spaces,” Proc. ACM Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

– J. Izraelevitz, T. Kelly, A. Kolli, “Failure-atomic persistent memory updates via JUSTDO logging,” Proc. ACM Conf. on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), 2016.

– K. Bresniker, S. Singhal, and S. Williams. “Adapting to thrive in a new economy of memory abundance,” IEEE Computer, December 2015.
– H. Volos, G,  Magalhaes, L, Cherkasova, J, Li. “Quartz: A lightweight performance emulator for persistent memory software,” Proc. of  ACM/Usenix/IFIP 

Conference on Middleware, 2015.
– H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. ACM SIGMOD, 2015.
– P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating systems,” Proc. USENIX Workshop on Hot Topics in Operating Systems 

(HotOS), 2015.
– S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, and T. Roscoe, D. Milojicic. “Not your parents’ physical address space,” Proc. USENIX HotOS, 2015.
– S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. ACM Intl. Workshop on 

Rack-scale Computing (WRSC), 2015.
– M. Swift and H. Volos. “Programming and usage models for non-volatile memory,” Tutorial at ACM ASPLOS, 2015.
– D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging locks for non-volatile memory consistency,” Proc. ACM Conf. on Object-Oriented Programming, 

Systems, Languages & Applications (OOPSLA), 2014.
– H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift. "Aerie: Flexible file-system interfaces to storage-class memory," Proc. ACM EuroSys, 

2014. 

©Copyright 2016 Hewlett Packard Enterprise Company



For open source code...
http://www.labs.hpe.com/research/themachine/TheMachineDistribution/

– Fast optimistic engine for data unification services 
(FOEDUS): https://github.com/hkimura/foedus

– Fault-tolerant programming model for non-volatile 
memory (Atlas):  
https://github.com/HewlettPackard/Atlas

– Fabric Attached Memory Emulation: 
https://github.com/FabricAttachedMemory/Emulation

– Performance emulation for non-volatile memory 
latency and bandwidth (Quartz): 
https://github.com/HewlettPackard/Quartz

©Copyright 2016 Hewlett Packard Enterprise Company

https://github.com/hkimura/foedus
https://github.com/HewlettPackard/Atlas
https://github.com/FabricAttachedMemory/Emulation
https://github.com/HewlettPackard/Quartz


Wrapping up

Memory-Driven Computing
• Fast load/store access to large shared pool of 

fabric-attached non-volatile memory

Many opportunities for software 
innovation
• Operating systems
• Data stores
• Analytics platforms
• Programming models and tools
• Applications
• Algorithms

How would you exploit Memory-Driven 
Computing?

SoC
SoC

SoC

So
C

Memory
+

Fabric

©Copyright 2016 Hewlett Packard Enterprise Company


	Memory-Driven Computing
	Slide Number 3
	Technology trends enabling Memory-Driven Computing
	Memory-Driven Computing in context
	Outline
	Memory driven systems software
	Traditional file systems
	Non-volatile memory aware file systems
	Linux for The Machine
	Slide Number 19
	Memory-driven data management
	Traditional databases
	FOEDUS: Fast optimistic engine for data unification services
	FOEDUS: Fast optimistic engine for data unification services
	FOEDUS: Open source embedded database
	Memory driven data analytics: �Spark for The Machine
	Spark contributions�Maximize advantages of large in-memory processing
	In-memory shuffle engine
	Predictive Analytics
	Slide Number 31
	Memory driven programming models
	Do we need separate data representations?
	NVM-aware application programming
	Persistent memory programming – Hewlett Packard Labs
	Manual solution
	Atlas solution: Consistent sections
	The Atlas programming model
	Managed Data Structures (MDS)
	Supporting safe data sharing
	Simplified data management – Benefits to application developer
	Prototypes and emulators
	Slide Number 51
	Show and tell at HPE Discover 2016
	Hardware/software co-development
	Fabric-Attached Memory Emulation for The Machine
	Quartz: NVM Performance Emulator
	Commercial Memory-Driven Computing
	HPE Integrity Superdome X
	HPE Persistent Memory
	Slide Number 71
	Slide Number 72
	Slide Number 73
	For more information...�http://www.labs.hpe.com/research/themachine/ �
	For open source code...�http://www.labs.hpe.com/research/themachine/TheMachineDistribution/�
	Wrapping up

